scholarly journals A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiangmin Yu ◽  
Zhiyuan Zhang ◽  
Siyao Qiu ◽  
Yuting Luo ◽  
Zhibo Liu ◽  
...  

AbstractThe use of highly-active and robust catalysts is crucial for producing green hydrogen by water electrolysis as we strive to achieve global carbon neutrality. Noble metals like platinum are currently used catalysts in industry for the hydrogen evolution, but suffer from scarcity, high price and unsatisfied performance and stability at large current density, restrict their large-scale implementations. Here we report the synthesis of a type of monolith catalyst consisting of a metal disulfide (e.g., tantalum sulfides) vertically bonded to a conductive substrate of the same metal tantalum by strong covalent bonds. These features give the monolith catalyst a mechanically-robust and electrically near-zero-resistance interface, leading to an excellent hydrogen evolution performance including rapid charge transfer and excellent durability, together with a low overpotential of 398 mV to achieve a current density of 2,000 mA cm−2 as required by industry. The monolith catalyst has a negligible performance decay after 200 h operation at large current densities. In light of its robust and metallic interface and the various choices of metals giving the same structure, such monolith materials would have broad uses besides catalysis.

2020 ◽  
Vol 65 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Sen Xue ◽  
Zhibo Liu ◽  
Chaoqun Ma ◽  
Hui-Ming Cheng ◽  
Wencai Ren

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Kordek-Khalil ◽  
Dawid Janas ◽  
Piotr Rutkowski

AbstractLarge-scale sustainable hydrogen production by water electrolysis requires a highly active yet low-cost hydrogen evolution reaction (HER) electrocatalyst. Conductive carbon nanomaterials with high surface areas are promising candidates for this purpose. In this contribution, single-walled carbon nanotubes (SWCNTs) are assembled into free-standing films and directly used as HER electrodes. During the initial 20 h of electrocatalytic performance in galvanostatic conditions, the films undergo activation, which results in a gradual overpotential decrease to the value of 225 mV. Transient physicochemical properties of the films at various activation stages are characterized to reveal the material features responsible for the activity boost. Results indicate that partial oxidation of iron nanoparticles encapsulated in SWCNTs is the major contributor to the activity enhancement. Furthermore, besides high activity, the material, composed of only earth-abundant elements, possesses exceptional performance stability, with no activity loss for 200 h of galvanostatic performance at − 10 mA cm−2. In conclusion, the work presents the strategy of engineering a highly active HER electrode composed of widely available elements and provides new insights into the origins of electrocatalytic performance of SWCNT-based materials in alkaline HER.


2016 ◽  
Vol 4 (24) ◽  
pp. 9472-9476 ◽  
Author(s):  
Haiqing Zhou ◽  
Fang Yu ◽  
Jingying Sun ◽  
Ran He ◽  
Yumei Wang ◽  
...  

Efficient hydrogen evolution catalysts are fabricated by growing WS2 on 3D graphene/Ni foam, featured by large current density (10 mA cm−2 at −119 mV) and low Tafel slope (∼43 mV per dec), outperforming most previous WS2 catalysts.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4651
Author(s):  
Yilin Deng ◽  
Wei Lai ◽  
Bin Xu

The energy crisis and environmental pollution have attracted much attention and have promoted researches on clean and sustainable hydrogen energy resources. With the help of highly active and stable transition metal nickel-based catalysts, the production of hydrogen from water electrolysis from electrolyzed water has become an inexpensive and efficient strategy for generating hydrogen energy. In recent years, heteroatom doping has been found to be an effective strategy to improve the electrocatalytic hydrogen evolution reaction (HER) performances of nickel-based catalysts in acidic, neutral, and alkaline media. This review will highlight many recent works of inexpensive and readily available heteroatom-doped nickel-based HER catalysts. The evaluation methods for the performances of HER catalyst will be briefly described, and the role of heteroatom doping and its application in nickel-based catalyst will be summarized. This article will also point out some heteroatom doping strategies, which may provide references and inspire the design of other catalysts with dopants.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 929 ◽  
Author(s):  
Sajjad Hussain ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Rana Afzal ◽  
Wooseok Song ◽  
...  

To find an effective alternative to scarce, high-cost noble platinum (Pt) electrocatalyst for hydrogen evolution reaction (HER), researchers are pursuing inexpensive and highly efficient materials as an electrocatalyst for large scale practical application. Layered transition metal dichalcogenides (TMDCs) are promising candidates for durable HER catalysts due to their cost-effective, highly active edges and Earth-abundant elements to replace Pt electrocatalysts. Herein, we design an active, stable earth-abundant TMDCs based catalyst, WS(1−x)Sex nanoparticles-decorated onto a 3D porous graphene/Ni foam. The WS(1−x)Sex/graphene/NF catalyst exhibits fast hydrogen evolution kinetics with a moderate overpotential of ~−93 mV to drive a current density of 10 mA cm−2, a small Tafel slope of ~51 mV dec−1, and a long cycling lifespan more than 20 h in 0.5 M sulfuric acid, which is much better than WS2/NF and WS2/graphene/NF catalysts. Our outcomes enabled a way to utilize the TMDCs decorated graphene and precious-metal-free electrocatalyst as mechanically robust and electrically conductive catalyst materials.


Nano Energy ◽  
2021 ◽  
Vol 80 ◽  
pp. 105545
Author(s):  
Yuanlin Xu ◽  
Chen Wang ◽  
Yunhui Huang ◽  
Jing Fu

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jinbo Hao ◽  
Feng Wei ◽  
Xinhui Zhang ◽  
Long Li ◽  
Chunling Zhang ◽  
...  

AbstractWater electrolysis is a sustainable and clean method to produce hydrogen fuel via hydrogen evolution reaction (HER). Using stable, effective and low-cost electrocatalysts for HER to substitute expensive noble metals is highly desired. In this paper, by using first-principles calculation, we designed a defect and N-, S-, P-doped penta-graphene (PG) as a two-dimensional (2D) electrocatalyst for HER, and its stability, electronic properties and catalytic performance were investigated. The Gibbs free energy (ΔGH), which is the best descriptor for the HER, is calculated and optimized, the calculation results show that the ΔGH can be 0 eV with C2 vacancies and P doping at C1 active sites, which should be the optimal performance for a HER catalyst. Moreover, we reveal that the larger charge transfer from PG to H, the closer ΔGH is to zero according to the calculation of the electron charge density differences and Bader charges analysis. Ulteriorly, we demonstrated that the HER performance prefers the Volmer–Heyrovsky mechanism in this study.


Sign in / Sign up

Export Citation Format

Share Document