scholarly journals Cutting the costs of coastal protection by integrating vegetation in flood defences

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincent T. M. van Zelst ◽  
Jasper T. Dijkstra ◽  
Bregje K. van Wesenbeeck ◽  
Dirk Eilander ◽  
Edward P. Morris ◽  
...  

AbstractExposure to coastal flooding is increasing due to growing population and economic activity. These developments go hand-in-hand with a loss and deterioration of ecosystems. Ironically, these ecosystems can play a buffering role in reducing flood hazard. The ability of ecosystems to contribute to reducing coastal flooding has been emphasized in multiple studies. However, the role of ecosystems in hybrid coastal protection (i.e. a combination of ecosystems and levees) has been poorly quantified at a global scale. Here, we evaluate the use of coastal vegetation, mangroves, and marshes fronting levees to reduce global coastal protection costs, by accounting for wave-vegetation interaction.The research is carried out by combining earth observation data and hydrodynamic modelling. We show that incooperating vegetation in hybrid coastal protection results in more sustainable and financially attractive coastal protection strategies. If vegetated foreshore levee systems were established along populated coastlines susceptible to flooding, the required levee crest height could be considerably reduced. This would result in a reduction of 320 (range: 107-961) billion USD2005 Power Purchasing Parity (PPP) in investments, of which 67.5 (range: 22.5- 202) billion USD2005 PPP in urban areas for a 1 in 100-year flood protection level.

2017 ◽  
Vol 50 (3) ◽  
pp. 1730
Author(s):  
A. Papastergios ◽  
M. Chini ◽  
I. Parcharidis

SAR earth observation data can provide high quality flood maps and information to better assess the flood risk accordingly planning as well as to support civil protection authorities during emergency phase. The scope of this paper is to create flood extent maps from a series of SAR scenes of the Evros basin which represents a transboundary floodplain. The study uses time series SAR images of Sentnel-1 ESA’s Copernicus satellite system covering the period October 2014 to May 2015. The methodology tries to identify the flood that occurs in three main land cover classes, such as urban areas, bare or poorly vegetated soil and vegetated areas, taking advantage of co- and cross-polarized SAR backscattering channels, and the InSAR coherence to better characterize the landscape. Dual-pol SAR data provides the opportunity to have a better understanding and interpretation of flood detection due to way different land cover react to different polarizations. Thus, with the implementation of InSAR coherence estimation we may achieve a better record and knowledge of the flooded areas, over time, in the specific region. 


2018 ◽  
Vol 18 (4) ◽  
pp. 1247-1260 ◽  
Author(s):  
Gemma L. Franklin ◽  
Alec Torres-Freyermuth ◽  
Gabriela Medellin ◽  
María Eugenia Allende-Arandia ◽  
Christian M. Appendini

Abstract. Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef–dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef–dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.


1999 ◽  
Vol 23 (2) ◽  
pp. 205-227 ◽  
Author(s):  
R. I. Ferguson

Models that predict meltwater runoff at a daily timescale are important in water resource management, flood hazard assessment and climate-change impact studies. This article identifies four basic components of such models: meteorological extrapolation, snowmelt estimation at a point, snow-cover depletion and runoff routing. Alternative ways of handling these are discussed, with emphasis on the contrasting treatments in two widely used models: HBV and SRM. Many of the issues in meltwater modelling reflect wider debates in hydrological and environmental modelling, including problems of complexity vs. simplicity, the appropriate level of spatial disaggregation, parameter identification and calibration, and internal validation. In reviewing current trends emphasis is placed on the potential and limitations of fully distributed models, problems in using energy-balance rather than temperature-index melt models at basin scale, ways to deal with spatial variability in snow cover, and the value and limitations of earth observation data.


Author(s):  
A. Nascetti ◽  
M. Di Rita ◽  
R. Ravanelli ◽  
M. Amicuzi ◽  
S. Esposito ◽  
...  

The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevada, Utah) and one Italian Region (Trentino Alto- Adige, Northern Italy) exploiting the potentiality of this platform. These are large areas characterized by different terrain morphology, land covers and slopes. The assessment has been performed using two different reference DSMs: the USGS National Elevation Dataset (NED) and a LiDAR acquisition. The DSMs accuracy has been evaluated through computation of standard statistic parameters, both at global scale (considering the whole State/Region) and in function of the terrain morphology using several slope classes. The geometric accuracy in terms of Standard deviation and NMAD, for SRTM range from 2-3 meters in the first slope class to about 45 meters in the last one, whereas for ASTER, the values range from 5-6 to 30 meters.<br><br> In general, the performed analysis shows a better accuracy for the SRTM in the flat areas whereas the ASTER GDEM is more reliable in the steep areas, where the slopes increase. These preliminary results highlight the GEE potentialities to perform DSM assessment on a global scale.


2020 ◽  
Vol 12 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ronald Estoque

The formulation of the 17 sustainable development goals (SDGs) was a major leap forward in humankind’s quest for a sustainable future, which likely began in the 17th century, when declining forest resources in Europe led to proposals for the re-establishment and conservation of forests, a strategy that embodies the great idea that the current generation bears responsibility for future generations. Global progress toward SDG fulfillment is monitored by 231 unique social-ecological indicators spread across 169 targets, and remote sensing (RS) provides Earth observation data, directly or indirectly, for 30 (18%) of these indicators. Unfortunately, the UN Global Sustainable Development Report 2019—The Future is Now: Science for Achieving Sustainable Development concluded that, despite initial efforts, the world is not yet on track for achieving most of the SDG targets. Meanwhile, through the EO4SDG initiative by the Group on Earth Observations, the full potential of RS for SDG monitoring is now being explored at a global scale. As of April 2020, preliminary statistical data were available for 21 (70%) of the 30 RS-based SDG indicators, according to the Global SDG Indicators Database. Ten (33%) of the RS-based SDG indicators have also been included in the SDG Index and Dashboards found in the Sustainable Development Report 2019—Transformations to Achieve the Sustainable Development Goals. These statistics, however, do not necessarily reflect the actual status and availability of raw and processed geospatial data for the RS-based indicators, which remains an important issue. Nevertheless, various initiatives have been started to address the need for open access data. RS data can also help in the development of other potentially relevant complementary indicators or sub-indicators. By doing so, they can help meet one of the current challenges of SDG monitoring, which is how best to operationalize the SDG indicators.


2011 ◽  
Vol 2 (2) ◽  
pp. 121-147 ◽  
Author(s):  
Michael Wurm ◽  
Hannes Taubenböck ◽  
Mathias Schardt ◽  
Thomas Esch ◽  
Stefan Dech

2017 ◽  
Author(s):  
Gemma L. Franklin ◽  
Alec Torres-Freyermuth ◽  
Gabriela Medellín ◽  
María Eugenia Allende-Arandia ◽  
Bernabé Gómez ◽  
...  

Abstract. Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of the barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea. Firstly, a nonlinear non-hydrostatic numerical model (SWASH) is validated with experimental data from a physical model of a fringing reef. The numerical model predicts both energy transformation and runup statistics as compared with experimental results for two different reef crest geometries conducted in a physical model. Thus, the numerical model is further used to investigate the role of the reef-dune degradation in coastal vulnerability. Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to predict extreme runup and estimate the storm impact scale for different scenarios. The numerical results show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. This highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term.


Author(s):  
G. Berdou ◽  
S. Shrestha ◽  
M. Hahn

Abstract. Integration of Sentinel-2 and Landsat-8 imagery is a key factor to provide earth observation data at a global scale with higher temporal resolution. Integration of data from two sensors is possible with the consistent harmonized data framed in common reference and processing, which can be used for comparing geophysical surface characteristics. This study focuses on the analysis of the atmospheric correction methods available for both Landsat-8 and Sentinel-2 products to convert the top of the atmosphere to the bottom of atmosphere reflectance. Other investigations (De Keukelaere, 2018) carried out similar analyses focusing on data acquired over water, while this study emphasises the analyses over land covers. Two processing algorithms iCOR and Sen2COR are utilized to perform atmospheric corrections, and results are statistically and visually compared. Comparisons based on same images processed with different algorithms show very strong correlation for some classes (urban: 0.99), while correlation values around 0.85 were achieved between images from different sensors.


Author(s):  
Christof J. Weissteiner ◽  
Martin Ickerott ◽  
Hannes Ott ◽  
Markus Probeck ◽  
Gernot Ramminger ◽  
...  

Riparian zones represent ecotones between terrestrial and aquatic ecosystems and are of utmost importance to biodiversity and ecosystem functions. Modelling/mapping of these valuable and fragile areas is needed for an improved ecosystem management, based on an accounting of changes and on monitoring of their functioning in time. In Europe, the main legislative driver behind this goal is the European Commission&rsquo;s Biodiversity Strategy to 2020, on one hand aiming at reducing biodiversity loss, on the other hand enhancing ecosystem services by 2020, and restoring them as far as feasible. A model, based on Earth Observation data, including Digital Elevation Models, hydrological, soil, land cover/land use data, and vegetation indices is employed in a multi-modular and stratified approach, based on fuzzy logic and object based image analysis, to delineate potential, observed and actual riparian zones. The approach is designed in an open modular way, allowing future modifications and repeatability. The results represent a first step of a future monitoring and assessment campaign for European riparian zones and their implications on biodiversity and on ecosystem functions and services. Considering the complexity and the enormous extent of the area, covering 39 European countries, including Turkey, the level of detail is unprecedented. Depending on the accounting modus, 0.95%&ndash;1.19% of the study area can be attributed as actual riparian area (considering Strahler&rsquo;s stream orders 3-8, based on the Copernicus EU-Hydro dataset), corresponding to 55,558&ndash;69.128 km2. Similarly depending on the accounting approach, the potential riparian zones are accounted for about 3-5 times larger. Land cover/land use in detected riparian areas was mainly of semi-natural characteristics, while the potential riparian areas are predominately covered by agriculture, followed by semi-natural and urban areas.


Sign in / Sign up

Export Citation Format

Share Document