scholarly journals Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Beibei Zhang ◽  
Shiqiang Yu ◽  
Ying Dai ◽  
Xiaojuan Huang ◽  
Lingjun Chou ◽  
...  

AbstractDeveloping low-cost and highly efficient catalysts toward the efficient oxygen evolution reaction (OER) is highly desirable for photoelectrochemical (PEC) water splitting. Herein, we demonstrated that N-incorporation could efficiently activate NiFeOx catalysts for significantly enhancing the oxygen evolution activity and stability of BiVO4 photoanodes, and the photocurrent density has been achieved up to 6.4 mA cm−2 at 1.23 V (vs. reversible hydrogen electrode (RHE), AM 1.5 G). Systematic studies indicate that the partial substitution of O sites in NiFeOx catalysts by low electronegative N atoms enriched the electron densities in both Fe and Ni sites. The electron-enriched Ni sites conversely donated electrons to V sites of BiVO4 for restraining V5+ dissolution and improving the PEC stability, while the enhanced hole-attracting ability of Fe sites significantly promotes the oxygen-evolution activity. This work provides a promising strategy for optimizing OER catalysts to construct highly efficient and stable PEC water splitting devices.

Author(s):  
Yingpu Bi ◽  
Bin zhao ◽  
Chenchen Feng ◽  
Xiaojuan Huang ◽  
Yong Ding

Highly efficient hole transfer from photoanodes to oxygen evolution catalysts is crucial for solar photoelectrochemical (PEC) water splitting. Herein, we demonstrated the coupling of NiCo catalysts with carbon quantum dots...


2016 ◽  
Vol 2 (6) ◽  
pp. e1501764 ◽  
Author(s):  
Yongcai Qiu ◽  
Wei Liu ◽  
Wei Chen ◽  
Wei Chen ◽  
Guangmin Zhou ◽  
...  

Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%.


2019 ◽  
Vol 7 (45) ◽  
pp. 26077-26088 ◽  
Author(s):  
Guangwei Zheng ◽  
Jinshu Wang ◽  
Guannan Zu ◽  
Haibing Che ◽  
Chen Lai ◽  
...  

Promising PEC water splitting activity with a photocurrent density of 3.16 mA cm−2 at 1.23 V vs. RHE was demonstrated in sandwich structured WO3 with exposed highly reactive (002) facet and superior crystallinity of 2-D nanoplatelets.


Author(s):  
Pradnya Bodhankar ◽  
Pradip B Sarawade ◽  
Ajayan Vinu ◽  
Gurwinder Singh ◽  
Dattatray Sadashiv Dhawale

Highly efficient, low-cost electrocatalyst having superior activity and stability are the crucial endeavor for practical electrochemical water splitting that involves hydrogen and oxygen evolution reactions (HER and OER). Sustainable production...


2020 ◽  
Vol 8 (26) ◽  
pp. 13340-13350
Author(s):  
Yayun Pu ◽  
Matthew J. Lawrence ◽  
Veronica Celorrio ◽  
Qi Wang ◽  
Meng Gu ◽  
...  

Low cost, high-efficiency catalysts towards water splitting are urgently required to fulfil the increasing demand for energy.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Yiqing Wei ◽  
Aizhen Liao ◽  
Lu Wang ◽  
Xiaoyong Wang ◽  
Dunhui Wang ◽  
...  

An ultrathin FeOOH cocatalyst is deposited on α-Fe2O3 photoanodes in a simple room temperature immersion process for efficient photoelectrochemical (PEC) water splitting. The prepared FeOOH/Fe2O3 photoanode has a photocurrent density of up to 2.4 mA/cm2 at 1.23 V versus reversible hydrogen electrode (RHE), and the photocurrent density is increased by about 160% compared to the bare Fe2O3 of 1.55 mA/cm2. An obvious cathodic shift of the photocurrent onset potential from 0.661 to 0.582 V was also observed, and excellent stability was maintained with almost no deterioration for 5 h. The enhanced PEC performance is attributed to the decrease of the interfacial resistance between electrode and electrolyte and the increase of the injection efficiency of holes in Fe2O3.


2018 ◽  
Vol 6 (5) ◽  
pp. 2067-2072 ◽  
Author(s):  
Jia Liu ◽  
Jinsong Wang ◽  
Bao Zhang ◽  
Yunjun Ruan ◽  
Houzhao Wan ◽  
...  

Designing low-cost and highly efficient bifunctional electrocatalysts for compatible integration with the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) for overall water splitting is critical but challenging.


Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jun Huang ◽  
Yanping Hou ◽  
...  

The oxygen evolution reaction (OER) is an important half-reaction in the field of energy production. However, how effectively, simply, and greenly to prepare low-cost OER electrocatalysts remains a problem. Herein,...


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4102 ◽  
Author(s):  
Ting Li ◽  
Dongyan Ding

We synthesized Ni/Si-codoped TiO2 nanostructures for photoelectrochemical (PEC) water splitting, by electrochemical anodization of Ti-1Ni-5Si alloy foils in ethylene glycol/glycerol solutions containing a small amount of water. The effects of annealing temperature on PEC properties of Ni/Si-codoped TiO2 photoanode were investigated. We found that the Ni/Si-codoped TiO2 photoanode annealed at 700 °C had an anatase-rutile mixed phase and exhibited the highest photocurrent density of 1.15 mA/cm2 at 0 V (vs. Ag/AgCl), corresponding to a photoconversion efficiency of 0.70%, which was superior to Ni-doped and Si-doped TiO2. This improvement in PEC water splitting could be attributed to the extended light absorption, faster charge transfer, possibly lower charge recombination, and longer lifetime.


Author(s):  
Qiucheng Xu ◽  
Jiahao Zhang ◽  
Haoxuan Zhang ◽  
Liyue Zhang ◽  
Ling Chen ◽  
...  

Alkaline water splitting, especially the anion-exchange-membrane based water electrolysis, is an attractive way for low-cost and scalable H2 production. Green electricity-driven alkaline water electrolysis is requested to develop highly-efficient electrocatalysts...


Sign in / Sign up

Export Citation Format

Share Document