scholarly journals Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells

2016 ◽  
Vol 2 (6) ◽  
pp. e1501764 ◽  
Author(s):  
Yongcai Qiu ◽  
Wei Liu ◽  
Wei Chen ◽  
Wei Chen ◽  
Guangmin Zhou ◽  
...  

Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Beibei Zhang ◽  
Shiqiang Yu ◽  
Ying Dai ◽  
Xiaojuan Huang ◽  
Lingjun Chou ◽  
...  

AbstractDeveloping low-cost and highly efficient catalysts toward the efficient oxygen evolution reaction (OER) is highly desirable for photoelectrochemical (PEC) water splitting. Herein, we demonstrated that N-incorporation could efficiently activate NiFeOx catalysts for significantly enhancing the oxygen evolution activity and stability of BiVO4 photoanodes, and the photocurrent density has been achieved up to 6.4 mA cm−2 at 1.23 V (vs. reversible hydrogen electrode (RHE), AM 1.5 G). Systematic studies indicate that the partial substitution of O sites in NiFeOx catalysts by low electronegative N atoms enriched the electron densities in both Fe and Ni sites. The electron-enriched Ni sites conversely donated electrons to V sites of BiVO4 for restraining V5+ dissolution and improving the PEC stability, while the enhanced hole-attracting ability of Fe sites significantly promotes the oxygen-evolution activity. This work provides a promising strategy for optimizing OER catalysts to construct highly efficient and stable PEC water splitting devices.


2020 ◽  
Vol 49 (42) ◽  
pp. 15023-15033
Author(s):  
Pran Krisna Das ◽  
Maheswari Arunachalam ◽  
Kanase Rohini Subhash ◽  
Young Jun Seo ◽  
Kwang-Soon Ahn ◽  
...  

Nanoporous tantalum nitride (Ta3N5) is a promising visible-light-driven photoanode for photoelectrochemical (PEC) water splitting with a narrow band gap of approximately 2.0 eV.


2020 ◽  
Vol 1 (1) ◽  
pp. 115-121
Author(s):  
Wenyan Zhang ◽  
Fei Liu ◽  
Yingfei Hu ◽  
Weimin Yang ◽  
Hangmin Guan ◽  
...  

For decades, the over-exploitation of fossil fuel has made it urgent to develop alternative energy. Photoelectrochemical (PEC) water splitting is a promising approach to generate hydrogen, which is referred to as the fuel of the future due to its high enthalpy of combustion and zero pollution. Though impressive progress has been made over the years, PEC water splitting efficiency is still far from volume production of hydrogen, and more efforts are required to reduce the overpotential, inhibit the yield of hydrogen peroxide by-product, improve the PEC current density, improve light-harvesting capability, and develop low-cost earth-abundant catalysts. Recently, chirality has shown to play a pivotal role in addressing the issues of PEC water splitting via the effect of chiralinduced spin controlling and chiral-enhanced light harvesting. It is high time to pay attention to the art of chirality in promoting water splitting efficiency. Herein, recent progress in this field is reviewed, the approaches to introducing chirality into photo/electronic catalysts for PEC water splitting are summarized, characterization techniques applied in this research field are summed up, the challenges of chirality-enhanced PEC water splitting are discussed, and based on the present achievements, its bright future is anticipated.


2012 ◽  
Vol 1512 ◽  
Author(s):  
Jen-Chun Chou ◽  
Min-Han Yang ◽  
Jon-Yiew Gan

AbstractTiO2 is one of the most promising photoanodes for solar-hydrogen conversion by water splitting. Recently, hydrothermally synthetic rutile TiO2 nanorods (NRs) show outstanding photoelectrochemical (PEC) performance in water splitting because of its large surface area, fast carrier transport, and short diffusion length. However, light absorption and carrier transport conflict. Few have investigated the dependence of PEC performance on NR length. This study examines how different TiO2 NR lengths grown on an FTO substrate affects their PEC performance when splitting water. The results show that the optimal absorption length of rutile TiO2 NRs is 3.75 μm. However, under simulated solar illumination (AM1.5 G), the maximum PEC efficiency of these TiO2 NRs is 0.33% at a length of 500 nm. This suggests that carrier transport is the most important variable for improving PEC efficiency.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 277
Author(s):  
Ravichandran Janani ◽  
Raja Preethi V ◽  
Shubra Singh ◽  
Aishwarya Rani ◽  
Chang-Tang Chang

One of the major aspects and advantages of solar energy conversion is the photocatalytic hydrogen generation using semiconductor materials for an eco-friendly technology. Designing a low-cost efficient material to overcome limited light absorption as well as rapid recombination of photogenerated charge carriers is essential to achieve considerable hydrogen generation. In recent years, sulfide based semiconductors have attracted scientific research interest due to their excellent solar response and narrow band gap. The present review focuses on the recent approaches in the development of hierarchical ternary sulfide based photocatalysts with a special focus on ZnIn2S4. We also observe how the electronic structure of ZnIn2S4 is beneficial for water splitting and the various strategies involved for improving the material efficiency for photocatalytic hydrogen generation. The review places emphasis on the latest advancement/new insights on ZnIn2S4 being used as an efficient material for hydrogen generation through photocatalytic water splitting. Recent progress on essential aspects which govern light absorption, charge separation and transport are also discussed in detail.


2018 ◽  
Vol 5 (10) ◽  
pp. 2571-2578 ◽  
Author(s):  
Chonghao Ma ◽  
Zhifeng Liu ◽  
Qijun Cai ◽  
Changcun Han ◽  
Zhengfu Tong

A ZnO/Cu2O/Co-Pi photoelectrode is applied in PEC water splitting, improving the light absorption and photogenerated carrier separation.


2021 ◽  
Vol 02 ◽  
Author(s):  
Yimeng Cao ◽  
Chuhong Zhu ◽  
Taotao Wang ◽  
Daochuan Jiang ◽  
Sheng Ye

: Photocatalytic water splitting for hydrogen production is a promising pathway for solar energy convention into chemicals. Among various semiconductor-based photocatalysts, cadmium sulfide (CdS) attracted extensive attentions due to the narrow band gap nature (2.4 eV) for efficient visible light absorption, suitable band position for water splitting, and outstanding photocatalytic activity. In this review, we summarize the recent advances for the synthesis of CdS, and modification strategies including heteroatom doping, loading cocatalysts, and hetero/homo-junction fabrication are also presented. Moreover, a brief perspective and challenges on CdS-based photocatalyst are also discussed.


2021 ◽  
Author(s):  
Bin Li ◽  
Qi Qin ◽  
Chuanyong Jian ◽  
Qian Cai ◽  
Wei Liu

BiVO4 (BVO) is a promising photoanode material for photoelectrochemical (PEC) water splitting. However, it is severely restricted by its short charge diffusion length and poor charge transport. Introducing oxygen vacancies...


Author(s):  
Zhichao Hao ◽  
Mengnan Ruan ◽  
Zhengang Guo ◽  
Weiguo Yan ◽  
Xiangfeng Wu ◽  
...  

The predicaments of poor carrier separation and light absorption need be overcome in order to maximize the preeminent performances of WO3 in photoelectrochemical (PEC) water splitting. Hence, we firstly prepared...


Sign in / Sign up

Export Citation Format

Share Document