scholarly journals Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yutaro Shiraishi ◽  
Yutaka Kofuku ◽  
Takumi Ueda ◽  
Shubhi Pandey ◽  
Hemlata Dwivedi-Agnihotri ◽  
...  

Abstractβ-arrestins (βarrs) play multifaceted roles in the function of G protein-coupled receptors (GPCRs). βarrs typically interact with phosphorylated C-terminal tail (C tail) and transmembrane core (TM core) of GPCRs. However, the effects of the C tail- and TM core-mediated interactions on the conformational activation of βarrs have remained elusive. Here, we show the conformational changes for βarr activation upon the C tail- and TM core-mediated interactions with a prototypical GPCR by nuclear magnetic resonance (NMR) spectroscopy. Our NMR analyses demonstrated that while the C tail-mediated interaction alone induces partial activation, in which βarr exists in equilibrium between basal and activated conformations, the TM core- and the C tail-mediated interactions together completely shift the equilibrium toward the activated conformation. The conformation-selective antibody, Fab30, promotes partially activated βarr into the activated-like conformation. This plasticity of βarr conformation in complex with GPCRs engaged in different binding modes may explain the multifunctionality of βarrs.

2015 ◽  
Vol 12 (2) ◽  
pp. 13
Author(s):  
Muhamad Faridz Osman ◽  
Karimah Kassim

The coordination complexes of Co(II) and Zn(II) with Schiff bases derived from o-phenylenediamine and substituted 2-hydroxybenzaldehyde were prepared All compounds were characterized by Fourier transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) spectroscopy elemental analyzers. They were analyzed using impedance spectroscopy in the frequency range of 100Hz-1 MHz. LI and L2 showed higher conductivity compared to their metal complexes, which had values of 1.3 7 x 10-7 and 6.13 x 10-8 S/cm respectively. 


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1472
Author(s):  
Nicola Cavallini ◽  
Francesco Savorani ◽  
Rasmus Bro ◽  
Marina Cocchi

The consumers’ interest towards beer consumption has been on the rise during the past decade: new approaches and ingredients get tested, expanding the traditional recipe for brewing beer. As a consequence, the field of “beeromics” has also been constantly growing, as well as the demand for quick and exhaustive analytical methods. In this study, we propose a combination of nuclear magnetic resonance (NMR) spectroscopy and chemometrics to characterize beer. 1H-NMR spectra were collected and then analyzed using chemometric tools. An interval-based approach was applied to extract chemical features from the spectra to build a dataset of resolved relative concentrations. One aim of this work was to compare the results obtained using the full spectrum and the resolved approach: with a reasonable amount of time needed to obtain the resolved dataset, we show that the resolved information is comparable with the full spectrum information, but interpretability is greatly improved.


Sign in / Sign up

Export Citation Format

Share Document