scholarly journals Cobalt-based magnetic Weyl semimetals with high-thermodynamic stabilities

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Eunwoo Lee ◽  
Rokyeon Kim ◽  
Junyeong Ahn ◽  
Bohm-Jung Yang

AbstractBased on first-principles calculations and tight-binding model analysis, we propose monolayer graphdiyne as a candidate material for a two-dimensional higher-order topological insulator protected by inversion symmetry. Despite the absence of chiral symmetry, the higher-order topology of monolayer graphdiyne is manifested in the filling anomaly and charge accumulation at two corners. Although its low energy band structure can be properly described by the tight-binding Hamiltonian constructed by using only the pz orbital of each atom, the corresponding bulk band topology is trivial. The nontrivial bulk topology can be correctly captured only when the contribution from the core levels derived from px,y and s orbitals are included, which is further confirmed by the Wilson loop calculations. We also show that the higher-order band topology of a monolayer graphdyine gives rise to the nontrivial band topology of the corresponding three-dimensional material, ABC-stacked graphdiyne, which hosts monopole nodal lines and hinge states.


2021 ◽  
Vol 7 (2) ◽  
pp. eabd4248
Author(s):  
Fengmiao Li ◽  
Yuting Zou ◽  
Myung-Geun Han ◽  
Kateryna Foyevtsova ◽  
Hyungki Shin ◽  
...  

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+. We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti–Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.


2018 ◽  
Vol 9 ◽  
pp. 1512-1526 ◽  
Author(s):  
Tudor D Stanescu ◽  
Anna Sitek ◽  
Andrei Manolescu

We consider core–shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and reduces the value of the critical field associated with the topological quantum phase transition.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay0443 ◽  
Author(s):  
Ching-Kai Chiu ◽  
T. Machida ◽  
Yingyi Huang ◽  
T. Hanaguri ◽  
Fu-Chun Zhang

The iron-based superconductor FeTexSe1−x is one of the material candidates hosting Majorana vortex modes residing in the vortex cores. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores having zero-bias peaks decreases with increasing magnetic field on the surface of FeTexSe1−x. The hybridization of two Majorana vortex modes cannot simply explain this phenomenon. We construct a three-dimensional tight-binding model simulating the physics of over a hundred Majorana vortex modes in FeTexSe1−x. Our simulation shows that the Majorana hybridization and disordered vortex distribution can explain the decreasing fraction of the zero-bias peaks observed in the experiment; the statistics of the energy peaks off zero energy in our Majorana simulation are in agreement with the experiment. These agreements lead to an important indication of scalable Majorana vortex modes in FeTexSe1−x. Thus, FeTexSe1−x can be one promising platform having scalable Majorana qubits for quantum computing.


2020 ◽  
Vol 10 (19) ◽  
pp. 6772 ◽  
Author(s):  
Yizhi Liu ◽  
Ziyu Huang ◽  
Yufei Gao

Topological optimization can realize the optimization of the mass distribution in the whole objective domain. Compared with morphology and size optimization, it has a higher degree of freedom. In this work, the three-dimensional topological optimization based on piezoelectric materials was discussed. Using the Optimality Criteria, topology optimization was applied to the cantilever piezoelectric transducer. The structure optimization was realized with the voltage and stiffness as the multi-objective function. The corresponding codes are given to show the process of optimization. With 70% of the origin volume, the bi-objective optimization increases the global stiffness by 50.9% and the voltage by 30%. As the iteration process shows, the results of bi-objective optimization prove the value of additive mass at the bottom of the cantilever. This lays the foundation for future piezoelectric transducer structural optimization. Using only stiffness as the objective, the final objective increases inconspicuously. Bi-objective optimization shows its superiority. There are quite a few papers that research the combination of stiffness and voltage, and research which studies three-dimensionality is a point of innovation. Furthermore, this is also the first time a piezoelectric topology code has been shared.


2013 ◽  
Vol 1564 ◽  
Author(s):  
M. R. Mahani ◽  
A. Pertsova ◽  
C.M. Canali ◽  
M. F. Islam ◽  
A.H. MacDonald

ABSTRACTWe present results of theoretical studies of transition metal dopants in GaAs, based on microscopic tight-binding model and ab-initio calculations. We focus in particular on how the vicinity of surface affects the properties of the hole-acceptor state, its magnetic anisotropy and its magnetic coupling to the magnetic dopant. In agreement with STM experiments, Mn substitutional dopants on the (110) GaAs surface give rise to a deep acceptor state, whose wavefunction is localized around the Mn center. We discuss a refinement of the theory that introduces explicitly the d-levels for the TM dopant. The explicit inclusion of d-levels is particularly important for addressing recent STM experiments on substitutional Fe in GaAs. In the second part of the paper we discuss an analogous investigation of single dopants in Bi2Se3 three-dimensional topological insulators, focusing in particular on how substitutional impurities positioned on the surface affect the electronic structure in the gap. We present explicit results for BiSe antisite defects and compare with STM experiments.


2020 ◽  
Vol 6 (8) ◽  
pp. eaav2360 ◽  
Author(s):  
Meng Xiao ◽  
Liping Ye ◽  
Chunyin Qiu ◽  
Hailong He ◽  
Zhengyou Liu ◽  
...  

Weyl points are zero-dimensional band degeneracy in three-dimensional momentum space that has nonzero topological charges. The presence of the topological charges protects the degeneracy points against perturbations and enables a variety of fascinating phenomena. It is so far unclear whether such charged objects can occur in higher dimensions. Here, we introduce the concept of charged nodal surface, a two-dimensional band degeneracy surface in momentum space that is topologically charged. We provide an effective Hamiltonian for this charged nodal surface and show that such a Hamiltonian can be implemented in a tight-binding model. This is followed by an experimental realization in a phononic crystal. The measured topologically protected surface arc state of such an acoustic semimetal reproduces excellently the full-wave simulations. Creating high-dimensional charged geometric objects in momentum space promises a broad range of unexplored topological physics.


Sign in / Sign up

Export Citation Format

Share Document