scholarly journals Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhanning Wang ◽  
Elizabeth Marcellina ◽  
Alex. R. Hamilton ◽  
James H. Cullen ◽  
Sven Rogge ◽  
...  

AbstractStrong spin-orbit interactions make hole quantum dots central to the quest for electrical spin qubit manipulation enabling fast, low-power, scalable quantum computation. Yet it is important to establish to what extent spin-orbit coupling exposes qubits to electrical noise, facilitating decoherence. Here, taking Ge as an example, we show that group IV gate-defined hole spin qubits generically exhibit optimal operation points, defined by the top gate electric field, at which they are both fast and long-lived: the dephasing rate vanishes to first order in the electric field noise along with all directions in space, the electron dipole spin resonance strength is maximized, while relaxation is drastically reduced at small magnetic fields. The existence of optimal operation points is traced to group IV crystal symmetry and properties of the Rashba spin-orbit interaction unique to spin-3/2 systems. Our results overturn the conventional wisdom that fast operation implies reduced lifetimes and suggest group IV hole spin qubits as ideal platforms for ultra-fast, highly coherent scalable quantum computing.

2020 ◽  
Author(s):  
Miao Jiang ◽  
Hirokatsu Asahara ◽  
Shinobu Ohya ◽  
Masaaki Tanaka

Abstract To achieve a desirable magnitude of spin-orbit torque (SOT) switching and realise multifunctional spin logic and memory devices utilising SOT, controlling the SOT manipulation is vitally important. In conventional SOT bilayer systems, researchers have tried to control the switching behaviour via interfacial oxidisation; however, the switching efficiency is limited by the interface quality. A current-induced effective magnetic field in a single layer of a ferromagnet with strong spin-orbit interactions, the so-called spin-orbit ferromagnet, can be utilised to induce SOT. In spin-orbit ferromagnet systems, electric field application has potential for manipulating the spin-orbit interactions via carrier concentration modulation. In this work, we demonstrate that SOT switching can be successfully controlled via an external electric field using a (Ga,Mn)As single layer. By applying a gate voltage, the switching current density can be solidly and reversibly manipulated with a large ratio of 14.5%, which is ascribed to the successful modulation of the interfacial electric field. Our findings help further the understanding of the magnetisation switching mechanism and advance the development of gate-controlled SOT devices.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ke Wang ◽  
Gang Xu ◽  
Fei Gao ◽  
He Liu ◽  
Rong-Long Ma ◽  
...  

AbstractOperation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum information processor.


Author(s):  
J. Nitta

This chapter focuses on the electron spin degree of freedom in semiconductor spintronics. In particular, the electrostatic control of the spin degree of freedom is an advantageous technology over metal-based spintronics. Spin–orbit interaction (SOI), which gives rise to an effective magnetic field. The essence of SOI is that the moving electrons in an electric field feel an effective magnetic field even without any external magnetic field. Rashba spin–orbit interaction is important since the strength is controlled by the gate voltage on top of the semiconductor’s two-dimensional electron gas. By utilizing the effective magnetic field induced by the SOI, spin generation and manipulation are possible by electrostatic ways. The origin of spin-orbit interactions in semiconductors and the electrical generation and manipulation of spins by electrical means are discussed. Long spin coherence is achieved by special spin helix state where both strengths of Rashba and Dresselhaus SOI are equal.


2021 ◽  
Vol 23 (5) ◽  
pp. 3668-3678
Author(s):  
Angela Rodriguez-Serrano ◽  
Fabian Dinkelbach ◽  
Christel M. Marian

Multireference quantum chemical calculations were performed in order to investigate the (reverse) intersystem crossing ((R)ISC) mechanisms of 4,5-di(9H-carbazol-9-yl)-phthalonitrile (2CzPN).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
George Gillard ◽  
Ian M. Griffiths ◽  
Gautham Ragunathan ◽  
Ata Ulhaq ◽  
Callum McEwan ◽  
...  

AbstractCombining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.


2014 ◽  
Vol 113 (26) ◽  
Author(s):  
Olga Goulko ◽  
Florian Bauer ◽  
Jan Heyder ◽  
Jan von Delft

2021 ◽  
Vol 7 (5) ◽  
pp. eabe2892
Author(s):  
Dmitry Shcherbakov ◽  
Petr Stepanov ◽  
Shahriar Memaran ◽  
Yaxian Wang ◽  
Yan Xin ◽  
...  

Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic, and topological phenomena and applications. In bulk materials, SOC strength is a constant. Here, we demonstrate SOC and intrinsic spin splitting in atomically thin InSe, which can be modified over a broad range. From quantum oscillations, we establish that the SOC parameter α is thickness dependent; it can be continuously modulated by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Unexpectedly, α could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.


2018 ◽  
Vol 10 (3) ◽  
pp. 2843-2849 ◽  
Author(s):  
Weiming Lv ◽  
Zhiyan Jia ◽  
Bochong Wang ◽  
Yuan Lu ◽  
Xin Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document