scholarly journals A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses

npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Carlos A. Arbelaez ◽  
Juan Estrada ◽  
Melissa A. Gessner ◽  
Charles Glaus ◽  
Agnieszka B. Morales ◽  
...  

AbstractCancer vaccines using synthetic long peptides (SLP) targeting tumor antigens have been tested in the clinic but the outcomes have been unimpressive, perhaps because these peptides elicit predominantly CD4+ T cell responses. We hypothesized that enhanced delivery of peptide antigens to, and uptake in, secondary lymphoid tissues should elicit more robust CD8+ and CD4+ T cell responses and improved anti-tumor responses. Here, we have designed SLP-containing cationic lipoplexes (SLP–Lpx) that improve delivery of peptides to myeloid cells in the spleen and lymphatics. Using the G12D KRAS mutations as neoantigens, we found that vaccination of mice with naked synthetic peptides harboring the G12D mutation with CpG adjuvant stimulated mainly CD4+ T cell responses with limited tumor growth inhibition. On the other hand, immunization with SLP–Lpx stimulated both CD4+ and CD8+ T cells and suppressed tumor growth in a CD8+ T cell-dependent manner. Combination of the SLP–Lpx vaccines with a checkpoint inhibitor led to profound growth suppression of established tumors. These studies suggest that preferential targeting of peptides derived from neoantigens to the spleen via lipoplexes elicits potent CD4+ and CD8+ T cell responses that inhibit tumor growth.

2020 ◽  
Vol 12 (551) ◽  
pp. eabd3081
Author(s):  
Ecaterina Ileana-Dumbrava

PD-L1 blockage on dendritic cells, but not macrophages, may enhance antitumor or CD8+ T cell responses leading to greater tumor growth inhibition.


2008 ◽  
Vol 205 (7) ◽  
pp. 1635-1646 ◽  
Author(s):  
Jodi McGill ◽  
Nico Van Rooijen ◽  
Kevin L. Legge

Influenza infections induce a rapid, but transient, dendritic cell (DC) migration from the lungs to the lymph nodes (LNs) that is followed by substantial recruitment of DCs into the lungs without subsequent migration to the LNs. Given that peripheral DCs are primarily thought to be involved in the initiation of adaptive immunity after migration into lymphoid tissues, what role these newly lung-recruited DCs play in influenza virus immunity is unclear. In this study, we demonstrate that loss of non-LN migratory pulmonary DC subsets increases mortality, sustains higher viral titers, and impairs pulmonary CD8 T cell responses. Reconstitution of the lungs with pulmonary plasmacytoid DCs, CD8α+ DCs, or interstitial DCs restores CD8 T cell responses in a cell contact–, major histocompatability complex I–, and influenza peptide–dependent manner. Thus, after their initial activation in the LN, protective influenza-specific CD8 T cell responses require additional antigen-dependent interactions, specifically with DCs in the lungs.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 307
Author(s):  
Yong Bok Seo ◽  
You Suk Suh ◽  
Ji In Ryu ◽  
Hwanhee Jang ◽  
Hanseul Oh ◽  
...  

The unprecedented and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19-vaccinated nonhuman primates seroconverted rapidly and exhibited a detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they had reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides a durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2.


Cytokine ◽  
2011 ◽  
Vol 56 (1) ◽  
pp. 86-87
Author(s):  
Ramtin Rahbar ◽  
Albert Lin ◽  
Magar Ghazarian ◽  
Philipp Lang ◽  
Alisha R Elford ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A613-A613
Author(s):  
Todd Triplett ◽  
Joshua Rios ◽  
Alexander Somma ◽  
Sarah Church ◽  
Khrystyna North ◽  
...  

BackgroundT cell Acute Lymphoblastic Leukemia (T-ALL) is a devastating malignancy found primarily in pediatric populations. Unfortunately, standard of care for T-ALL has not progressed from highly toxic, intensive regimens of chemotherapy, which fails to cure all patients. Immunotherapies designed to activate patients‘ leukemia-specific T cells may provide a new therapeutic avenue to increase complete response rates, reduce toxicity without the need to engineer (e.g. CAR) cells. However, it is unknown whether T-ALL is capable of being recognized by T cells due given its relatively low mutation-rate. These studies therefore sought to investigate whether signs of leukemia-specific T cell responses are generated by T-ALL. Because T-ALL results in systemic disease and infiltrates multiple lymphoid and non-lymphoid tissues, these studies also determined how the divergent immune contextures of these TMEs impacts T cell responses to T-ALL. From this, we aim to identify immunotherapeutic targets capable of activating T cells across tissues to eradicate leukemia systemically.MethodsPrimary leukemia cells isolated from a spontaneous murine model (LN3 mice) into immune-competent, congenic (CD45.1) recipient mice. Tissues were harvested at distinct stages of disease for analysis by flow cytometry or utilizing NanoString Technologies’ GeoMX Digital Spatial Profiling (DSP) platform.ResultsFlow cytometric analysis of T cells revealed extensive changes in response to T-ALL that included multiple features of exhaustion typically associated with anti-tumor responses as determined by upregulation of co-inhibitory receptors and TOX. This included a surprisingly high-frequency of PD1+ T cells, which was accompanied by PDL1- and PDL2-expressing myeloid cells that likely are restraining these subsets. Importantly, combination immunotherapy with OX40 agonists while inhibiting PD1 resulted in drastically reduced tumor burden and concomitant expansion of proliferating granzyme-expressing CD8 T cells. To gain better insight into T cell responses within distinct organs, we analyzed tissue sections using DSP. This technique enabled us to evaluate T cells in direct contact with leukemia infiltrates compared to T cells in regions without T-ALL, which further revealed an enrichment of activated subsets. Importantly, these studies have provided critical insight needed to better understand how T cells responding to T-ALL diverge between distinct types of tissues.ConclusionsThe results from these studies collectively suggest that T cells are activated by T-ALL and that they can be therapeutically harnessed despite relatively low mutation-rates. Future studies will continue analysis of individual organs and use these results to rationally design combinations of immunotherapies by tailoring to activate T cells in all tissue types.AcknowledgementsSpecial thanks to all the support and analysis from everyone at NanoString, along with financial support provided by a SITC-NanoString DSP Fellowship awarded to Dr. Todd Triplett used for DSP analysis of all frozen tissues in these studies. Salary support for Dr. Triplett and pilot funding was provided by departmental funds via a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar Award (Grant #RR160093; awarded to Dr. Gail Eckhardt).


2014 ◽  
Vol 98 ◽  
pp. 36
Author(s):  
C. Falk ◽  
K. Daemen ◽  
M. Stevanovic-Meyer ◽  
F. Lehner ◽  
H. Haller ◽  
...  

2012 ◽  
Vol 210 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Dimitra Peppa ◽  
Upkar S. Gill ◽  
Gary Reynolds ◽  
Nicholas J.W. Easom ◽  
Laura J. Pallett ◽  
...  

Antiviral T cell responses in hepatotropic viral infections such as hepatitis B virus (HBV) are profoundly diminished and prone to apoptotic deletion. In this study, we investigate whether the large population of activated NK cells in the human liver contributes to this process. We show that in vitro removal of NK cells augments circulating CD8+ T cell responses directed against HBV, but not against well-controlled viruses, in patients with chronic hepatitis B (CHB). We find that NK cells can rapidly eliminate HBV-specific T cells in a contact-dependent manner. CD8+ T cells in the liver microcirculation are visualized making intimate contact with NK cells, which are the main intrahepatic lymphocytes expressing TNF-related apoptosis-inducing ligand (TRAIL) in CHB. High-level expression of the TRAIL death receptor TRAIL-R2 is found to be a hallmark of T cells exposed to the milieu of the HBV-infected liver in patients with active disease. Up-regulation of TRAIL-R2 renders T cells susceptible to caspase-8–mediated apoptosis, from which they can be partially rescued by blockade of this death receptor pathway. Our findings demonstrate that NK cells can negatively regulate antiviral immunity in chronic HBV infection and illustrate a novel mechanism of T cell tolerance in the human liver.


Sign in / Sign up

Export Citation Format

Share Document