scholarly journals A unique hot Jupiter spectral sequence with evidence for compositional diversity

2021 ◽  
Author(s):  
Megan Mansfield ◽  
Michael R. Line ◽  
Jacob L. Bean ◽  
Jonathan J. Fortney ◽  
Vivien Parmentier ◽  
...  
2020 ◽  
Author(s):  
Megan Mansfield ◽  
Michael Line ◽  
Jacob Bean ◽  
Jonathan Fortney ◽  
Vivien Parmentier ◽  
...  

Abstract The emergent spectra of close-in, giant exoplanets ("hot Jupiters") are believed to be distinct from those of young gas giants and brown dwarfs with similar effective temperatures because these objects are primarily heated from above by their host stars rather than internally from the release of energy from their formation (Showman et al. 2020). Theoretical models predict a continuum of dayside spectra for hot Jupiters as a function of irradiation level, with the coolest planets having absorption features in their spectra, intermediate-temperature planets having emission features due to thermal inversions, and the hottest planets having blackbody-like spectra due to molecular dissociation and continuum opacity from the H- ion (Fortney et al. 2008, Parmentier et al. 2018, Arcangeli et al. 2018). Absorption and emission features have been detected in the spectra of a number of individual hot Jupiters (Kreidberg et al. 2014, Mikal-Evans et al. 2020), and population-level trends have been observed in photometric measurements (Keating et al. 2019, Baxter et al. 2020, Garhart et al. 2020, Dransfield et al. 2020). However, there has been no unified, population-level study of the thermal emission spectra of hot Jupiters such as has been done for brown dwarfs (Manjavacas et al. 2019) and transmission spectra of hot Jupiters (Sing et al. 2016). Here we show that hot Jupiter secondary eclipse spectra centered around a water absorption band at 1.4 microns follow a common trend in water feature strength with temperature. The observed trend is broadly consistent with the predictions of self-consistent one-dimensional models for how the thermal structures of solar composition planets vary with irradiation level. Nevertheless, the ensemble of planets exhibits significant scatter around the mean trend. The spread can be accounted for if the planets have modest variations in metallicity and/or elemental abundance ratios, which is expected from planet formation models (Mordasini et al. 2016, Ali-Dib et al. 2017, Madhusudhan et al. 2017, Cridland et al. 2019).


2018 ◽  
Vol 11 (4) ◽  
pp. 484-501 ◽  
Author(s):  
Mike Hoa Nguyen ◽  
Jason Chan ◽  
Bach Mai Dolly Nguyen ◽  
Robert T. Teranishi

2019 ◽  
Vol 67 (19) ◽  
pp. 5621-5633 ◽  
Author(s):  
Ye Tian ◽  
Oskar Laaksonen ◽  
Heta Haikonen ◽  
Anita Vanag ◽  
Huma Ejaz ◽  
...  

2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.


Author(s):  
Dominic Leon Culver ◽  
Paul VanKoughnett

AbstractAs a step towards understanding the $$\mathrm {tmf}$$ tmf -based Adams spectral sequence, we compute the K(1)-local homotopy of $$\mathrm {tmf}\wedge \mathrm {tmf}$$ tmf ∧ tmf , using a small presentation of $$L_{K(1)}\mathrm {tmf}$$ L K ( 1 ) tmf due to Hopkins. We also describe the K(1)-local $$\mathrm {tmf}$$ tmf -based Adams spectral sequence.


2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


2018 ◽  
Vol 859 (2) ◽  
pp. L28 ◽  
Author(s):  
Mihoko Konishi ◽  
Jun Hashimoto ◽  
Yasunori Hori
Keyword(s):  
T Tauri ◽  

Sign in / Sign up

Export Citation Format

Share Document