Antarctic fast-ice trends

Author(s):  
Bronwyn Wake
Keyword(s):  
1977 ◽  
Vol 19 (81) ◽  
pp. 547-554 ◽  
Author(s):  
Hajime Ito ◽  
Fritz Müller

AbstractThe understanding of the horizontal movement of fast ice is important for applied sea-ice mechanics. A case study, carried out in conjunction with a polynya known as North Water, is presented in this paper. The displacements of the fast-ire arches which separate the polynya from the surrounding ice-covered sea, were measured and found to be small. It is, therefore, confirmed that these arches prevent the influx of large quantities of sea ice into the polynya. The results are then explained in terms of the external forces (wind and current), the stress- strain situations and some physical characteristics (temperature and thickness) which were measured simultaneously.


2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


Science ◽  
1999 ◽  
Vol 283 (5404) ◽  
pp. 993-996 ◽  
Author(s):  
R. W. Davis ◽  
L. A. Fuiman ◽  
T. M. Williams ◽  
S. O. Collier ◽  
W. P. Hagey ◽  
...  

Polar Biology ◽  
2018 ◽  
Vol 41 (10) ◽  
pp. 2119-2134 ◽  
Author(s):  
Karl M. Attard ◽  
Dorte H. Søgaard ◽  
Judith Piontek ◽  
Benjamin A. Lange ◽  
Christian Katlein ◽  
...  
Keyword(s):  
Pack Ice ◽  

1977 ◽  
Vol 19 (81) ◽  
pp. 533-546 ◽  
Author(s):  
W. F. Weeks ◽  
A. Kovacs ◽  
S. J. Mock ◽  
W. B. Tucker ◽  
W. D. Hibler ◽  
...  

Abstract During March-May 1976, a combination of laser and radar ranging systems was used to study the motion of both the fast ice and the pack ice near Narwhal and Cross Islands, two barrier islands located 16 and 21 km offshore in the vicinity of Prudhoe Bay, Alaska. Laser measurements of targets on the fast ice near Narwhal Island indicate small net displacements of approximately 1 m over the period of study (71 d) with short-term displacements of up to 40 cm occurring over 3 d periods. The main motion was outward normal to the coast and was believed to be the result of thermal expansion of the ice. The radar records of fast-ice sites farther offshore show a systematic increase in the standard deviation of the displacements as measured parallel to the coast, reaching a value of ±6.6 m at 31 km. The farthest fast-ice sites show short-term displacements of up to 12 m. There are also trends in the records that are believed to be the result of the general warming of the fast ice with time. Radar targets located on the pack ice showed large short-term displacements (up to 2.7 km) but negligible net ice drift along the coast. There was no significant correlation between the movement of the pack and the local wind, suggesting that coastal ice prediction models can only succeed if handled as part of a regional model which incorporates stress transfer through the pack. The apparent fast-ice-pack-ice boundary in the study area was located in 30-35 m of water.


2018 ◽  
Vol 12 (11) ◽  
pp. 3459-3476 ◽  
Author(s):  
Iina Ronkainen ◽  
Jonni Lehtiranta ◽  
Mikko Lensu ◽  
Eero Rinne ◽  
Jari Haapala ◽  
...  

Abstract. While variations of Baltic Sea ice extent and thickness have been extensively studied, there is little information about drift ice thickness, distribution, and its variability. In our study, we quantify the interannual variability of sea ice thickness in the Bay of Bothnia during the years 2003–2016. We use various different data sets: official ice charts, drilling data from the regular monitoring stations in the coastal fast ice zone, and helicopter and shipborne electromagnetic soundings. We analyze the different data sets and compare them to each other to characterize the interannual variability, to discuss the ratio of level and deformed ice, and to derive ice thickness distributions in the drift ice zone. In the fast ice zone the average ice thickness is 0.58±0.13 m. Deformed ice increases the variability of ice conditions in the drift ice zone, where the average ice thickness is 0.92±0.33 m. On average, the fraction of deformed ice is 50 % to 70 % of the total volume. In heavily ridged ice regions near the coast, mean ice thickness is approximately half a meter thicker than that of pure thermodynamically grown fast ice. Drift ice exhibits larger interannual variability than fast ice.


Sign in / Sign up

Export Citation Format

Share Document