scholarly journals Structural basis of early translocation events on the ribosome

Nature ◽  
2021 ◽  
Author(s):  
Emily J. Rundlet ◽  
Mikael Holm ◽  
Magdalena Schacherl ◽  
S. Kundhavai Natchiar ◽  
Roger B. Altman ◽  
...  

AbstractPeptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2–20 per second) and with a low error rate (around 10−3 to 10−5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.

1975 ◽  
Vol 146 (1) ◽  
pp. 127-131 ◽  
Author(s):  
L Montanaro ◽  
S Sperti ◽  
A Mattioli ◽  
G Testoni ◽  
F Stirpe

The binding of EF2 (elongation factor 2) and of ADP-ribosyl-EF 2 to rat liver ribosomes is inhibited by ricin. This result suggests that the native enzyme and its ADP-ribose derivative have the same or closely related binding sites on the ribosome. The inhibition by ricin of the binding of EF 2 to ribosomes is consistent with the previous observation that ricin affects EF 2-catalysed translocation during polypeptide chain elongation.


1976 ◽  
Vol 156 (1) ◽  
pp. 7-13 ◽  
Author(s):  
S Sperti ◽  
L Montanaro ◽  
A Mattioli ◽  
G Testoni ◽  
F Stirpe

The effects of crotin I and crotin II on the partial reactions of polypeptide chain elongation were investigated and compared with the known effects of ricin. Crotin II was a more powerful inhibitor than crotin I, but no qualitative differences between the two crotins were found. Rat liver ribosomes, preincubated with crotins and washed through sucrose gradients, remained inactive in protein synthesis. Among the individual steps of elongation, the peptidyltransferase reaction was unaffected by crotins, but some of the reactions that involve the interaction of elongation factors 1 and 2 with ribosomes were modified. A strong inhibition of the binding of elongation factor 2 to ribosomes and a stimulation of the elongation factor2-dependent GTP hydrolysis were observed; this indicates the formation of a very unstable elongation factor 2-GDP-ribosome complex, which, however, allows a single round of translocation to take place in the presence ofelongation factor 2 and added GTP. The elongation factor 1-dependent GTP hydrolysis was inhibited by crotins, whereas the enzymic binding of aminoacyl-tRNA, to both rat liver and Artemia salina ribosomes, was scarcely affected. In a protein-synthesizing system the inhibition by crotins and by ricin leads to a block of the nascent peptides on the ribosomal aminoacyl-tRNA site, an effect consistent with inhibition at the level of translocation. The mechanism of action of crotins appears to be very similar to that of ricin.


2018 ◽  
Vol 115 (44) ◽  
pp. 11226-11231 ◽  
Author(s):  
Samuel Hong ◽  
S. Sunita ◽  
Tatsuya Maehigashi ◽  
Eric D. Hoffer ◽  
Jack A. Dunkle ◽  
...  

Accurate translation of the genetic code is critical to ensure expression of proteins with correct amino acid sequences. Certain tRNAs can cause a shift out of frame (i.e., frameshifting) due to imbalances in tRNA concentrations, lack of tRNA modifications or insertions or deletions in tRNAs (called frameshift suppressors). Here, we determined the structural basis for how frameshift-suppressor tRNASufA6 (a derivative of tRNAPro) reprograms the mRNA frame to translate a 4-nt codon when bound to the bacterial ribosome. After decoding at the aminoacyl (A) site, the crystal structure of the anticodon stem-loop of tRNASufA6 bound in the peptidyl (P) site reveals ASL conformational changes that allow for recoding into the +1 mRNA frame. Furthermore, a crystal structure of full-length tRNASufA6 programmed in the P site shows extensive conformational rearrangements of the 30S head and body domains similar to what is observed in a translocation intermediate state containing elongation factor G (EF-G). The 30S movement positions tRNASufA6 toward the 30S exit (E) site disrupting key 16S rRNA–mRNA interactions that typically define the mRNA frame. In summary, this tRNA-induced 30S domain change in the absence of EF-G causes the ribosome to lose its grip on the mRNA and uncouples the canonical forward movement of the tRNAs during elongation.


1998 ◽  
Vol 336 (3) ◽  
pp. 525-529 ◽  
Author(s):  
Tricia A. DIGGLE ◽  
Nicholas T. REDPATH ◽  
Kate J. HEESOM ◽  
Richard M. DENTON

Treatment of primary rat epididymal adipocytes or 3T3-L1 adipocytes with various agents which increase cAMP led to the phosphorylation of eukaryotic translation elongation factor-2 (eEF-2). The increase in eEF-2 phosphorylation was a consequence of the activation of eEF-2 kinase (eEF-2K), which is a Ca2+/calmodulin-dependent kinase. eEF-2K was shown to be essentially inactive at less than 0.1 µM free Ca2+ when measured in cell-free extracts. Treatment of adipocytes with isoproterenol induced Ca2+-independent eEF-2K activity, and an 8–10-fold activation of eEF-2K was observed at Ca2+ concentrations of less than 0.1 µM. Increased cAMP in 3T3-L1 adipocytes led to the inhibition of total protein synthesis and decreased the rate of polypeptide-chain elongation. We also show that the phosphorylation of eEF-2 and the activity of eEF-2K are insulin-regulated in adipocytes. These results demonstrate a novel mechanism for the control of protein synthesis by hormones which act by increasing cytoplasmic cAMP.


1994 ◽  
Vol 266 (4) ◽  
pp. E628-E634 ◽  
Author(s):  
T. C. Vary ◽  
A. Nairn ◽  
C. J. Lynch

Cardiac muscles of experimentally induced diabetic rats show a progressive decrease in the rate of protein synthesis. The decline in protein synthesis is associated with decreases in both the number and efficiency of cardiac ribosomes. In hearts from 48 h diabetic rats, the decrease in protein synthesis was accounted for solely by a 28% reduction in the ribosome content. In contrast, the inhibition of protein synthesis in hearts from 72 h diabetic rats resulted from a reduction in both the ribosome content (28%) and the translational efficiency (30%). The decreased translational efficiency was not associated with an increase of RNA in ribosomal subunits, indicating the defect resulted from an inhibition of peptide-chain elongation/termination. Diabetes of 72 h duration resulted in a 37% inhibition in the rate of peptide-chain elongation. The decreased rate of peptide-chain elongation was associated with a 66% reduction in the amount of elongation factor 2 (EF-2). Treatment of diabetic rats with insulin for 3 days was sufficient to reverse the effects of 72 h diabetes on protein synthesis, RNA content, and translational efficiency. Also, insulin therapy increased the EF-2 content of diabetic rats to control values. These studies suggest that decreased EF-2 content is a molecular mechanism for the impaired rates of peptide-chain elongation in diabetes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bertrand Beckert ◽  
Elodie C. Leroy ◽  
Shanmugapriya Sothiselvam ◽  
Lars V. Bock ◽  
Maxim S. Svetlov ◽  
...  

AbstractMacrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.


Sign in / Sign up

Export Citation Format

Share Document