Using advanced spatial and single-cell transcriptomics to characterize the human endometrium

2021 ◽  
Author(s):  
Xiyin Wang ◽  
Shannon M. Hawkins
2020 ◽  
Vol 26 (10) ◽  
pp. 1644-1653 ◽  
Author(s):  
Wanxin Wang ◽  
Felipe Vilella ◽  
Pilar Alama ◽  
Inmaculada Moreno ◽  
Marco Mignardi ◽  
...  

2020 ◽  
Author(s):  
Felipe Vilella ◽  
Wanxin Wang ◽  
Inmaculada Moreno ◽  
Stephen R. Quake ◽  
Carlos Simon

AbstractWe investigated potential SARS-CoV-2 tropism in human endometrium by single-cell RNA-sequencing of viral entry-associated genes in healthy women. Percentages of endometrial cells expressing ACE2, TMPRSS2, CTSB, or CTSL were <2%, 12%, 80%, and 80%, respectively, with 0.7% of cells expressing all four genes. Our findings imply low efficiency of SARS-CoV-2 infection in the endometrium before embryo implantation, providing information to assess preconception risk in asymptomatic carriers.


2018 ◽  
Vol 110 (4) ◽  
pp. e2
Author(s):  
W. Wang ◽  
F. Vilella ◽  
I. Moreno ◽  
W. Pan ◽  
S. Quake ◽  
...  

2018 ◽  
Author(s):  
Wanxin Wang ◽  
Felipe Vilella ◽  
Pilar Alama ◽  
Inmaculada Moreno ◽  
Marco Mignardi ◽  
...  

SummaryIn a human menstrual cycle, the endometrium undergoes remodeling, shedding, and regeneration, all of which are driven by substantial gene expression changes in the underlying cellular hierarchy. Despite its importance in human fertility and regenerative biology, mechanistic understanding of this unique type of tissue homeostasis remains rudimentary. We characterized the transcriptomic transformation of human endometrium at single cell resolution, dissecting the multidimensional cellular heterogeneity of this tissue across the entire natural menstrual cycle. We profiled the behavior of 6 endometrial cell types, including a previously uncharacterized ciliated epithelial cell type, during four major phases of endometrial transformation, and found characteristic signatures for each cell type and phase. We discovered that human window of implantation opens with an abrupt and discontinuous transcriptomic activation in the epithelia, accompanied with widespread decidualized feature in the stromal fibroblasts. These data reveal signatures in the luminal and glandular epithelia during epithelial gland reconstruction, and suggest a mechanism for adult gland formation.


2020 ◽  
Author(s):  
Maria Diniz-da-Costa ◽  
Chow-Seng Kong ◽  
Katherine J Fishwick ◽  
Thomas Rawlings ◽  
Paul John Brighton ◽  
...  

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.


Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Sign in / Sign up

Export Citation Format

Share Document