ciliated epithelial cell
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 1)

2018 ◽  
Author(s):  
Wanxin Wang ◽  
Felipe Vilella ◽  
Pilar Alama ◽  
Inmaculada Moreno ◽  
Marco Mignardi ◽  
...  

SummaryIn a human menstrual cycle, the endometrium undergoes remodeling, shedding, and regeneration, all of which are driven by substantial gene expression changes in the underlying cellular hierarchy. Despite its importance in human fertility and regenerative biology, mechanistic understanding of this unique type of tissue homeostasis remains rudimentary. We characterized the transcriptomic transformation of human endometrium at single cell resolution, dissecting the multidimensional cellular heterogeneity of this tissue across the entire natural menstrual cycle. We profiled the behavior of 6 endometrial cell types, including a previously uncharacterized ciliated epithelial cell type, during four major phases of endometrial transformation, and found characteristic signatures for each cell type and phase. We discovered that human window of implantation opens with an abrupt and discontinuous transcriptomic activation in the epithelia, accompanied with widespread decidualized feature in the stromal fibroblasts. These data reveal signatures in the luminal and glandular epithelia during epithelial gland reconstruction, and suggest a mechanism for adult gland formation.


2018 ◽  
Author(s):  
Bingbing Wu ◽  
Yu Li ◽  
Yanshan Liu ◽  
Kaixiu Jin ◽  
Kun Zhao ◽  
...  

SUMMARYThe human uterus is a highly dynamic tissue that undergoes repeated damage repair and regeneration during the menstrual cycle, which make it ideal model to study tissue regeneration and pathological process. Stem/progenitors were speculated to be involved in the regeneration of endometrial epithelial and pathogenesis of endometriosis. But the identity, microenvironment and regulatory mechanisms of the uterus epithelial stem/progenitors in vivo remain unclear. Here, we dissected the cell heterogeneities of the full-thickness human uterus epithelial cells (11 clusters), stroma cells (6 clusters), endothelial cells (5 clusters), smooth muscle cells (2 clusters), myofibroblasts (2 clusters) and immune cells (6 clusters) from 2735 single cell by single cell RNA-seq. Further analysis identified a unique ciliated epithelial cell cluster showing characteristics of stem/progenitors with properties of epithelial-mesenchymal transition (EMT) that mainly localized in the upper functionalis of the endometrium. Ordering the cell subpopulations along the pseudo-space revealed cell clusters possess cellular states of stress, inflammation and apoptosis in the upper functionalis cellular ecosystem of the endometrium. Connectivity map between the human uterus subpopulations revealed potential inflammatory (cytokines and chemokines) and developmental (WNT, FGF, VEGF) signals within the upper functionalis cellular ecosystem of the endometrium, especially from other epithelial clusters, regulating cell plasticity of the EMT-epithelial clusters. This study reconstructed the heterogeneities, space-specific distribution and connectivity map of human uterus atlas, which would provide insight in the regeneration of uterus endometria and reference for the pathogenesis of uterus.


2010 ◽  
Vol 43 (6) ◽  
pp. 635-640 ◽  
Author(s):  
Samantha M. Simet ◽  
Joseph H. Sisson ◽  
Jacqueline A. Pavlik ◽  
Jane M. DeVasure ◽  
Craig Boyer ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. L231-L234 ◽  
Author(s):  
Emma L. Rawlins ◽  
Brigid L. M. Hogan

The steady-state turnover of epithelial cells in the lung and trachea is highly relevant to investigators who are studying endogenous stem cells, manipulating gene expression in vivo, or using viral vectors for gene therapy. However, the average lifetime of different airway epithelial cell types has not previously been assessed using currently available genetic techniques. Here, we use Cre/loxP genetic technology to indelibly label a random fraction of ciliated cells throughout the airways of a cohort of mice and follow them in vivo for up to 18 mo. We demonstrate that ciliated airway epithelial cells are a terminally differentiated population. Moreover, their average half-life of 6 mo in the trachea and 17 mo in the lung is much longer than previously available estimates, with significant numbers of labeled cells still present after 18 mo.


2004 ◽  
Vol 32 (3) ◽  
pp. 615-625 ◽  
Author(s):  
A Okada ◽  
Y Ohta ◽  
SL Brody ◽  
H Watanabe ◽  
A Krust ◽  
...  

Estrogen regulates proliferation and differentiation of epithelial cells in the mammalian oviduct, but pathways for cell-specific differentiation are not well understood. In the epithelial cells of the developing rat oviduct, we found estrogen receptor (ER) alpha is expressed at birth and persists in all cells through neonatal day (ND) 7 when ciliated cells appear. To determine a specific function of ER and foxj1, a transcription factor known to have fundamental roles in ciliogenesis in the lung, in differentiation of the ciliated epithelial cells, we treated newborn rats from ND 0 to 5 with estradiol-17beta (E2) with and without a selective ER antagonist. E2 enhanced the number of proliferating cells and accelerated the process of epithelial cell differentiation resulting in ciliogenesis by ND 5, and co-treatment with an ER antagonist inhibited these changes. Foxj1 was expressed only in the infundibulum and ampulla (INF/AMP). That expression preceded the appearance of cilia and was induced by E2. Cilia were absent in oviducts of foxj1-deficient mice, indicating that foxj1 plays a critical role in oviductal ciliogenesis. However, we found the presence of cilia in the ERalpha-deficient mouse oviduct. The widespread expression of ERalpha in oviductal epithelium, but restriction of cilia to the INF/AMP regions, and importantly, the presence of cilia in the ERalpha-deficient mice, suggested ER signaling is not essential for ciliated epithelial cell differentiation. These observations demonstrate that, although E2 stimulates the differentiation process of ciliated epithelial cells, foxj1 is directly required for epithelial cell ciliogenesis of the neonatal oviduct.


2003 ◽  
Vol 30 (3) ◽  
pp. 301-315 ◽  
Author(s):  
A Okada ◽  
Y Ohta ◽  
S Inoue ◽  
H Hiroi ◽  
M Muramatsu ◽  
...  

To determine expression and localization of receptors for estrogen (ER), progesterone (PR) and androgen (AR), detailed immunohistochemical evaluations were performed in the Sprague-Dawley rat oviduct during pre- and neonatal development, estrous cycle and pre-implantation period. In addition, real-time RT-PCR studies were conducted to evaluate changes in ERalpha, ERbeta, total PR (PR-A+B), PR-B and AR mRNA expressions. All receptors except for ERbeta were detected in epithelial, and stromal or mesenchymal cells of the fetal and neonatal oviduct, and increased with development. During the estrous cycle and early pregnancy, ERalpha and PR-A+B were expressed in epithelial, stromal and muscle cells throughout the oviduct region, and showed changes in expression predominantly in the isthmus. Only a few epithelial cells in the infundibulum (inf) and ampulla (AMP) showed ERbeta staining. AR was detected in stromal and muscle cells throughout the oviduct region, and in epithelial cells of the inf/AMP. Taken together, ERalpha, PR-A+B and AR were detected in the epithelium of the inf/AMP region, but all of these receptors were expressed in a distinct subset of epithelial cells which were negative for beta-tubulin IV, a ciliated epithelial cell marker. These results contribute to a better understanding of the respective roles of ERs, PRs and AR in the rat oviduct.


2000 ◽  
Vol 15 (7) ◽  
pp. 1597-1603 ◽  
Author(s):  
Hisao Ando ◽  
Miya Kobayashi ◽  
Shigeru Toda ◽  
Fumitaka Kikkawa ◽  
Tetsuo Masahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document