scholarly journals Detection of splice isoforms and rare intermediates using multiplexed primer extension sequencing

2018 ◽  
Vol 16 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Hansen Xu ◽  
Benjamin J. Fair ◽  
Zachary W. Dwyer ◽  
Michael Gildea ◽  
Jeffrey A. Pleiss
2018 ◽  
Author(s):  
Hansen Xu ◽  
Benjamin J. Fair ◽  
Zach Dwyer ◽  
Michael Gildea ◽  
Jeffrey A. Pleiss

ABSTRACTTargeted RNA-sequencing aims to focus coverage on areas of interest that are inadequately sampled in standard RNA-sequencing experiments. Here we present a novel approach for targeted RNA-sequencing that uses complex pools of reverse transcription primers to enable sequencing enrichment at user-selected locations across the genome. We demonstrate this approach by targeting hundreds to thousands of pre-mRNA splice junctions, revealing high-precision detection of splice isoforms, including rare pre-mRNA splicing intermediates.


2020 ◽  
Vol 15 ◽  
Author(s):  
Hongdong Li ◽  
Wenjing Zhang ◽  
Yuwen Luo ◽  
Jianxin Wang

Aims: Accurately detect isoforms from third generation sequencing data. Background: Transcriptome annotation is the basis for the analysis of gene expression and regulation. The transcriptome annotation of many organisms such as humans is far from incomplete, due partly to the challenge in the identification of isoforms that are produced from the same gene through alternative splicing. Third generation sequencing (TGS) reads provide unprecedented opportunity for detecting isoforms due to their long length that exceeds the length of most isoforms. One limitation of current TGS reads-based isoform detection methods is that they are exclusively based on sequence reads, without incorporating the sequence information of known isoforms. Objective: Develop an efficient method for isoform detection. Method: Based on annotated isoforms, we propose a splice isoform detection method called IsoDetect. First, the sequence at exon-exon junction is extracted from annotated isoforms as the “short feature sequence”, which is used to distinguish different splice isoforms. Second, we aligned these feature sequences to long reads and divided long reads into groups that contain the same set of feature sequences, thereby avoiding the pair-wise comparison among the large number of long reads. Third, clustering and consensus generation are carried out based on sequence similarity. For the long reads that do not contain any short feature sequence, clustering analysis based on sequence similarity is performed to identify isoforms. Result: Tested on two datasets from Calypte Anna and Zebra Finch, IsoDetect showed higher speed and compelling accuracy compared with four existing methods. Conclusion: IsoDetect is a promising method for isoform detection. Other: This paper was accepted by the CBC2019 conference.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 320
Author(s):  
Lorissa I. McDougall ◽  
Ryan M. Powell ◽  
Magdalena Ratajska ◽  
Chi F. Lynch-Sutherland ◽  
Sultana Mehbuba Hossain ◽  
...  

Melanoma comprises <5% of cutaneous malignancies, yet it causes a significant proportion of skin cancer-related deaths worldwide. While new therapies for melanoma have been developed, not all patients respond well. Thus, further research is required to better predict patient outcomes. Using long-range nanopore sequencing, RT-qPCR, and RNA sequencing analyses, we examined the transcription of BARD1 splice isoforms in melanoma cell lines and patient tissue samples. Seventy-six BARD1 mRNA variants were identified in total, with several previously characterised isoforms (γ, φ, δ, ε, and η) contributing to a large proportion of the expressed transcripts. In addition, we identified four novel splice events, namely, Δ(E3_E9), ▼(i8), IVS10+131▼46, and IVS10▼176, occurring in various combinations in multiple transcripts. We found that short-read RNA-Seq analyses were limited in their ability to predict isoforms containing multiple non-contiguous splicing events, as compared to long-range nanopore sequencing. These studies suggest that further investigations into the functional significance of the identified BARD1 splice variants in melanoma are warranted.


2021 ◽  
Vol 185 ◽  
pp. 113262
Author(s):  
Fengge Song ◽  
Yangdao Wei ◽  
Peng Wang ◽  
Xiaolin Ge ◽  
Chaoyang Li ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Jianhang Yin ◽  
Mengzhu Liu ◽  
Yang Liu ◽  
Jinchun Wu ◽  
Tingting Gan ◽  
...  

2001 ◽  
Vol 183 (15) ◽  
pp. 4405-4412 ◽  
Author(s):  
Rojana Sukchawalit ◽  
Suvit Loprasert ◽  
Sopapan Atichartpongkul ◽  
Skorn Mongkolsuk

ABSTRACT Analysis of the sequence immediate upstream of ohrrevealed an open reading frame, designated ohrR, with the potential to encode a 17-kDa peptide with moderate amino acid sequence homology to the MarR family of negative regulators of gene expression. ohrR was transcribed as bicistronic mRNA with ohr, while ohr mRNA was found to be 95% monocistronic and 5% bicistronic with ohrR. Expression of both genes was induced by tert-butyl hydroperoxide (tBOOH) treatment. High-level expression ofohrR negatively regulated ohr expression. This repression could be overcome by tBOOH treatment. In vivo promoter analysis showed that the ohrR promoter (P1) has organic peroxide-inducible, strong activity, while the ohrpromoter (P2) has constitutive, weak activity. Only P1 is autoregulated by OhrR. ohr primer extension results revealed three major primer extension products corresponding to the 5′ ends ofohr mRNA, and their levels were strongly induced by tBOOH treatment. Sequence analysis of regions upstream of these sites showed no typical Xanthomonas promoter. Instead, the regions can form a stem-loop secondary structure with the 5′ ends ofohr mRNA located in the loop section. The secondary structure resembles the structure recognized and processed by RNase III enzyme. These findings suggest that the P1 promoter is responsible for tBOOH-induced expression of the ohrR-ohr operon. The bicistronic mRNA is then processed by RNase III-like enzymes to give high levels of ohr mRNA, while ohrR mRNA is rapidly degraded.


2015 ◽  
Vol 446 ◽  
pp. 241-247 ◽  
Author(s):  
Margarita Petropoulou ◽  
Amalia Poula ◽  
Jan Traeger-Synodinos ◽  
Emmanuel Kanavakis ◽  
Theodore K. Christopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document