tp53 tumor suppressor gene
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 22 (3) ◽  
pp. 1097
Author(s):  
Jeong Hoon Lee ◽  
Kye Hwa Lee ◽  
Ju Han Kim

To exploit negatively interacting pairs of cancer somatic mutations in chemotherapy responses or synthetic cytotoxicity (SC), we systematically determined mutational pairs that had significantly lower paclitaxel half maximal inhibitory concentration (IC50) values. We evaluated 407 cell lines with somatic mutation profiles and estimated their copy number and drug-inhibitory concentrations in Genomics of Drug Sensitivity in Cancer (GDSC) database. The SC effect of 142 mutated gene pairs on response to paclitaxel was successfully cross-validated using human cancer datasets for urogenital cancers available in The Cancer Genome Atlas (TCGA) database. We further analyzed the cumulative effect of increasing SC pair numbers on the TP53 tumor suppressor gene. Patients with TCGA bladder and urogenital cancer exhibited improved cancer survival rates as the number of disrupted SC partners (i.e., SYNE2, SON, and/or PRY) of TP53 increased. The prognostic effect of SC burden on response to paclitaxel treatment could be differentiated from response to other cytotoxic drugs. Thus, the concept of pairwise SC may aid the identification of novel therapeutic and prognostic targets.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 98
Author(s):  
Paola Menichini ◽  
Paola Monti ◽  
Andrea Speciale ◽  
Giovanna Cutrona ◽  
Serena Matis ◽  
...  

Because of its role in the regulation of the cell cycle, DNA damage response, apoptosis, DNA repair, cell migration, autophagy, and cell metabolism, the TP53 tumor suppressor gene is a key player for cellular homeostasis. TP53 gene is mutated in more than 50% of human cancers, although its overall dysfunction may be even more frequent. TP53 mutations are detected in a lower percentage of hematological malignancies compared to solid tumors, but their frequency generally increases with disease progression, generating adverse effects such as resistance to chemotherapy. Due to the crucial role of P53 in therapy response, several molecules have been developed to re-establish the wild-type P53 function to mutant P53. PRIMA-1 and its methylated form PRIMA-1Met (also named APR246) are capable of restoring the wild-type conformation to mutant P53 and inducing apoptosis in cancer cells; however, they also possess mutant P53-independent properties. This review presents the activities of PRIMA-1 and PRIMA-1Met/APR246 and describes their potential use in hematological malignancies.


2021 ◽  
Vol 14 ◽  
pp. 263485352199409
Author(s):  
Catherine S Hwang ◽  
Dick G Hwang ◽  
David M Aboulafia

Despite representing 30% to 40% of newly diagnosed cases of adult non-Hodgkin lymphoma, diffuse large B-cell lymphoma (DLBCL) rarely presents (1) in the leukemic phase (2) with dysregulation of the TP53 tumor suppressor gene and (3) an elevated serum lactic acid level. In this case report and literature review, we highlight this unfortunate triad of poor prognostic features associated with an aggressive and fatal clinical course in a 53-year-old man with recrudescent DLBCL. A leukemic presentation of de novo or relapsed DLBCL is rare and may be related to differential expressions of adhesion molecules on cell surfaces. In addition, TP53 gene mutations are present in approximately 20% to 25% of DLBCL cases and foreshadow worse clinical outcomes. Finally, an elevated serum lactic acid level in DLBCL that is not clearly associated with sepsis syndrome is a poor prognostic factor for survival and manifests as type B lactic acidosis through the Warburg effect.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Olga Fedorova ◽  
Alexandra Daks ◽  
Oleg Shuvalov ◽  
Alena Kizenko ◽  
Alexey Petukhov ◽  
...  

Abstract Breast cancer is one of the world’s leading causes of oncological disease-related death. It is characterized by a high degree of heterogeneity on the clinical, morphological, and molecular levels. Based on molecular profiling breast carcinomas are divided into several subtypes depending on the expression of a number of cell surface receptors, e.g., ER, PR, and HER2. The Her2-positive subtype occurs in ~10–15% of all cases of breast cancer, and is characterized by a worse prognosis of patient survival. This is due to a high and early relapse rate, as well as an increased level of metastases. Several FDA-approved drugs for the treatment of Her2-positive tumors have been developed, although eventually cancer cells develop drug resistance. These drugs target either the homo- or heterodimerization of Her2 receptors or the receptors’ RTK activity, both of them being critical for the proliferation of cancer cells. Notably, Her2-positive cancers also frequently harbor mutations in the TP53 tumor suppressor gene, which exacerbates the unfavorable prognosis. In this review, we describe the molecular mechanisms of RTK-specific drugs and discuss new perspectives of combinatorial treatment of Her2-positive cancers through inhibition of the mutant form of p53.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 361 ◽  
Author(s):  
Marco Cordani ◽  
Giovanna Butera ◽  
Raffaella Pacchiana ◽  
Francesca Masetto ◽  
Nidula Mullappilly ◽  
...  

The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an “Achilles heel” of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.


2019 ◽  
Vol 20 (13) ◽  
pp. 3162 ◽  
Author(s):  
Huang-Yu Yang ◽  
Chih-Chao Yang ◽  
Chao-Yi Wu ◽  
Li-Jen Wang ◽  
Kun-Lin Lu

Urothelial carcinoma of the bladder (UCB) and upper tracts (UTUC) used to share management with similar principles. However, their genetic and epigenetic differences along with different responses to immunotherapy were recently identified, which are reminiscent of their distinct etiologies. Different from the variety of environmental factors relating to UCB, UTUC is best known for its close relationship with exposure to aristolochic acid (AA). AA is believed to cause its carcinogenicity through forming DNA adducts of deoxyadenosine-aristolactam, as well as A:T → T:A transversions in the TP53 tumor suppressor gene. Since recent findings suggested that cancers with higher somatic mutations are associated with better treatment responses upon immune checkpoint blockade, UTUC and AA-related biomarkers reasonably serve as good candidates, as well as a potential prognostic predictor for the flourishing immunotherapy. This review covers the current state of the literature on the clinical response of UTUC and UCB receiving immunotherapy and points out directions for refinement regarding patient selection.


Sign in / Sign up

Export Citation Format

Share Document