Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges

Author(s):  
David Schafflick ◽  
Jolien Wolbert ◽  
Michael Heming ◽  
Christian Thomas ◽  
Maike Hartlehnert ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lesley R. de Armas ◽  
Suresh Pallikkuth ◽  
Li Pan ◽  
Stefano Rinaldi ◽  
Nicola Cotugno ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1312-1312
Author(s):  
Ronan Chaligne ◽  
Federico Gaiti ◽  
Franco Izzo ◽  
Steven Kothen-Hill ◽  
Hongcang Gu ◽  
...  

Abstract Genetic, epigenetic and transcriptional heterogeneity cooperate to fuel cancer's ability to evolve and adapt to therapy. In chronic lymphocytic leukemia (CLL), we have shown through bulk DNA methylation (DNAme) sequencing that the growing CLL populations diversify through stochastic DNAme changes (epimutations), impacting transcriptional heterogeneity, clonal evolution and clinical outcome. To directly integrate across epigenetic, genetic and transcriptional intra-leukemic cell-to-cell variation, we developed a high-throughput multi-modality platform that jointly interrogates the methylome, transcriptome and genetic driver mutations from the same single cell (Fig. A). We applied it to >2,000 B cells from 6 healthy donors and 12 CLL samples. We found that the common clonal CLL origin resulted in an elevated but uniform epimutation rate (i.e., low cell-to-cell epimutation variability). In contrast, in index sorted B cell subsets, ranging in maturity from naïve B cells (CD27-IgM+IgD+++IgG-) to memory B cells (CD27+IgG+), variable epimutation rates reflect cells with diverse evolutionary ages across the B cell differentiation trajectory (Fig. B). Thus, we posited that epimutation can serve as a "molecular clock", enabling high-resolution lineage reconstruction, applicable directly to patient samples. CLL lineage tree topology revealed earlier branching, and longer branch lengths than normal B cells, consistent with rapid drift after transformation, and a greater proliferative history (Fig. C). In contrast to CLL topologies, non-clonal normal B cell trees provided a smaller increase in clustering accuracy compared with parsimony-based trees (P < 0.001; Fig. D). To validate the inferred tree topology, we leveraged our multi-modal capture of DNAme and genetic drivers in single cells. Indeed, genetic subclones mapped accurately to distinct clades inferred solely based on epimutation information [e.g., a clade composed of SF3B1 mutants and another clade composed of SF3B1 wild-type cells (P = 7 x 10-9; Fig. E, F)]. Using the joint single-cell transcriptional profiling, we found that cells in SF3B1 mutated clade also displayed higher alternative 3' splicing than their wild-type counterparts (P = 0.01526; Fig. G). Cells belonging to SF3B1 mutated clade were marked by expression changes in genes related to DNA damage (e.g., KLF8) and Notch signaling (e.g., DTX4) (P < 0.05; Fig. H, I). The direct linking of single-cell transcriptional data with lineage identity also showed that transcriptional similarity between cells decreases as a function of their lineage distance (P < 0.05; Fig. K). Notably, the molecular clock feature of epimutations enabled precise timing of subclonal divergence event in the CLL's evolutionary history, estimated to have occurred 2180±219 days after the emergence of the parental clone (Fig. J). To examine potential lineage biases during therapy, we performed serial multimodal single-cell profiling of a CLL patient without subclonal genetic drivers, prior to and during ibrutinib-associated lymphocytosis. The lineage trees revealed a distinct clade of cells preferentially expelled from the lymph node, marked by a distinct transcriptional profile, likely representing ibrutinib-sensitive cells. Lastly, we hypothesized that frequent epigenetic modifier mutations seen in hematological malignancies may increase the epimutation rate promoting intra-leukemic cellular diversity. To test this hypothesis, we applied our multi-modality single-cell platform to cells from TET2 knock-out (KO) mouse models, and observed higher epimutation rates, closely associated with higher cell-to-cell transcriptional heterogeneity compared with wild-type cells (P < 0.0001; Fig. L, M). In summary, we revealed that CLL show uniformly elevated epimutation rates, reflecting the common evolutionary age of these cells. By leveraging the heritable information captured through epimutation data, we provided a native lineage tracing applicable directly to patient samples. With this approach, we showed that CLL lineage topology exhibit early branching and long-branch length, consistent with exponential growth. Finally, we demonstrated that multimodal single-cell profiling enables projection of genetic and transcriptional identity onto the lineage tree, providing a direct measurement of the heritability of transcriptional profiles as a function of lineage distance. Figure. Figure. Disclosures Wu: Neon Therapeutics: Equity Ownership.


Author(s):  
Ana Rita Pombo Antunes ◽  
Isabelle Scheyltjens ◽  
Francesca Lodi ◽  
Julie Messiaen ◽  
Asier Antoranz ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. e001877
Author(s):  
Irfan N Bandey ◽  
Jay R T Adolacion ◽  
Gabrielle Romain ◽  
Melisa Martinez Paniagua ◽  
Xingyue An ◽  
...  

BackgroundAdoptive cell therapy based on the infusion of chimeric antigen receptor (CAR) T cells has shown remarkable efficacy for the treatment of hematologic malignancies. The primary mechanism of action of these infused T cells is the direct killing of tumor cells expressing the cognate antigen. However, understanding why only some T cells are capable of killing, and identifying mechanisms that can improve killing has remained elusive.MethodsTo identify molecular and cellular mechanisms that can improve T-cell killing, we utilized integrated high-throughput single-cell functional profiling by microscopy, followed by robotic retrieval and transcriptional profiling.ResultsWith the aid of mathematical modeling we demonstrate that non-killer CAR T cells comprise a heterogeneous population that arise from failure in each of the discrete steps leading to the killing. Differential transcriptional single-cell profiling of killers and non-killers identified CD137 as an inducible costimulatory molecule upregulated on killer T cells. Our single-cell profiling results directly demonstrate that inducible CD137 is feature of killer (and serial killer) T cells and this marks a different subset compared with the CD107apos (degranulating) subset of CAR T cells. Ligation of the induced CD137 with CD137 ligand (CD137L) leads to younger CD19 CAR T cells with sustained killing and lower exhaustion. We genetically modified CAR T cells to co-express CD137L, in trans, and this lead to a profound improvement in anti-tumor efficacy in leukemia and refractory ovarian cancer models in mice.ConclusionsBroadly, our results illustrate that while non-killer T cells are reflective of population heterogeneity, integrated single-cell profiling can enable identification of mechanisms that can enhance the function/proliferation of killer T cells leading to direct anti-tumor benefit.


Sign in / Sign up

Export Citation Format

Share Document