lineage tree
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 35)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Feng Chen ◽  
Zizhang Li ◽  
Xiaoyu Zhang ◽  
Peng Wu ◽  
Wenjing Yang ◽  
...  

Differences in gene expression levels among genetically identical cells naturally accumulate during cellular proliferation, forming the basis of expression noise or differentiation. Nevertheless, how transcriptome-wide noise accumulation is constrained to maintain homeostasis during continuous cell divisions has remained largely unresolved. We developed a novel method named single-cell transcriptome and dense tree (STADT) to simultaneously determines the transcriptomes and lineage tree of >50% single cells in a single-cell-seeded colony. This lineage tree revealed gradual accumulation of transcriptome differences that became saturated upon four cell divisions, reduced expression noise for sub-tree/sub-colonies closer to inferred expression boundaries, and transcriptionally modulated co-fluctuations among genes. These results collectively showed, for the first time, constrained dynamics of expression noise in the context of cell division.


2021 ◽  
Author(s):  
Mohammad-Hadi Foroughmand-Araabi ◽  
Sama Goliaei ◽  
Alice Carolyn McHardy

Single-cell genome sequencing provides a highly granular view of biological systems but is affected by high error rates, allelic amplification bias, and uneven genome coverage. This creates a need for data-specific computational methods, for purposes such as for cell lineage tree inference. The objective of cell lineage tree reconstruction is to infer the evolutionary process that generated a set of observed cell genomes. Lineage trees may enable a better understanding of tumor formation and growth, as well as of organ development for healthy body cells. We describe a method, Scelestial, for lineage tree reconstruction from single-cell data, which is based on an approximation algorithm for the Steiner tree problem and is a generalization of the neighbor-joining method. We adapt the algorithm to efficiently select a limited subset of potential sequences as internal nodes, in the presence of missing values, and to minimize cost by lineage tree-based missing value imputation. In a comparison against seven state-of-the-art single-cell lineage tree reconstruction algorithms - BitPhylogeny, OncoNEM, SCITE, SiFit, SASC, SCIPhI, and SiCloneFit - on simulated and real single-cell tumor samples, Scelestial performed best at reconstructing trees in terms of accuracy and run time. Scelestial has been implemented in C++. It is also available as an R package named RScelestial.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fang Wang ◽  
Qihan Wang ◽  
Vakul Mohanty ◽  
Shaoheng Liang ◽  
Jinzhuang Dou ◽  
...  

AbstractWe present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT.


Genetics ◽  
2021 ◽  
Author(s):  
Gal Yankovitz ◽  
Ofir Cohn ◽  
Eran Bacharach ◽  
Naama Peshes-Yaloz ◽  
Yael Steuerman ◽  
...  

Abstract Recent computational methods have enabled the inference of the cell-type-specificity of eQTLs based on bulk transcriptomes from highly heterogeneous tissues. However, these methods are limited in their scalability to highly heterogeneous tissues and limited in their broad applicability to any cell-type specificity of eQTLs. Here we present and demonstrate Cell Lineage Genetics (CeL-Gen), a novel computational approach that allows inference of eQTLs together with the subsets of cell types in which they have an effect, from bulk transcriptome data. To obtain improved scalability and broader applicability, CeL-Gen takes as input the known cell lineage tree and relies on the observation that dynamic changes in genetic effects occur relatively infrequently during cell differentiation. CeL-Gen can therefore be used not only to tease apart genetic effects derived from different cell types but also to infer the particular differentiation steps in which genetic effects are altered.


2020 ◽  
Author(s):  
Ivan Croydon Veleslavov ◽  
Michael P.H. Stumpf

AbstractSingle cell transcriptomics has laid bare the heterogeneity of apparently identical cells at the level of gene expression. For many cell-types we now know that there is variability in the abundance of many transcripts, and that average transcript abun-dance or average gene expression can be a unhelpful concept. A range of clustering and other classification methods have been proposed which use the signal in single cell data to classify, that is assign cell types, to cells based on their transcriptomic states. In many cases, however, we would like to have not just a classifier, but also a set of interpretable rules by which this classification occurs. Here we develop and demonstrate the interpretive power of one such approach, which sets out to establish a biologically interpretable classification scheme. In particular we are interested in capturing the chain of regulatory events that drive cell-fate decision making across a lineage tree or lineage sequence. We find that suitably defined decision trees can help to resolve gene regulatory programs involved in shaping lineage trees. Our approach combines predictive power with interpretabilty and can extract logical rules from single cell data.


2020 ◽  
Author(s):  
Irepan Salvador-Martínez ◽  
Marco Grillo ◽  
Michalis Averof ◽  
Maximilian J Telford

Recent innovations in genetics and imaging are providing the means to reconstruct cell lineages, either by tracking cell divisions using live microscopy, or by deducing the history of cells using molecular recorders. A cell lineage on its own, however, is simply a description of cell divisions as branching events. A major goal of current research is to integrate this description of cell relationships with information about the spatial distribution and identities of the cells those divisions produce. Visualising, interpreting and exploring these complex data in an intuitive manner requires the development of new tools. Here we present CeLaVi, a web-based visualisation tool that allows users to navigate and interact with a representation of cell lineages, whilst simultaneously visualising the spatial distribution, identities and properties of cells. CeLaVi's principal functions include the ability to explore and manipulate the cell lineage tree; to visualise the spatial distribution of cell clones at different depths of the tree; to colour cells in the 3D viewer based on lineage relationships; to visualise various cell qualities on the 3D viewer (e.g. gene expression, cell type, tissue layer) and to annotate selected cells/clones. All these capabilities are demonstrated with four different example data sets. CeLaVi is available at http://www.celavi.pro.


2020 ◽  
Author(s):  
Christopher Walsh ◽  
Sangita Choudhury ◽  
August Huang ◽  
Junho Junho Kim ◽  
Katherine Morillo ◽  
...  

Abstract The accumulation of somatic DNA mutations is a hallmark of aging in many dividing cells and contributes to carcinogenesis. Here we survey the landscape of somatic single-nucleotide variants (sSNVs) in heart muscle cells (cardiomyocytes) which normally do not proliferate but often become polyploid with age. Using single-cell whole-genome sequencing we analyzed sSNVs from 48 single cardiomyocytes from 10 healthy individuals (ages 0.4 - 82 yrs.). Cardiomyocyte sSNVs increased strikingly with age, at rates faster than reported in many dividing cells, or in non-dividing neurons. Analysis of nucleotide substitution patterns revealed age-related “clock-like” mutational signatures resembling those previously described. However, cardiomyocytes showed distinct mutational signatures that are rare or absent in other cells, implicating failed nucleotide excision repair of oxidative damage and defective mismatch repair (MMR) during aging. A lineage tree of cardiomyocytes, constructed using clonal sSNVs, revealed that some tetraploid (10%) and most cardiomyocytes with higher ploidy (>60%) derive from distinct clonal origins, implicating cell fusion as a mechanism contributing to many polyploid cardiomyocytes. Since age-accumulated sSNVs create dozens of damaging exonic mutations, cell fusion to form multiploid cardiomyocytes may represent an evolutionary mechanism of cellular genetic compensation that minimizes complete knockout of essential genes during aging. The rates and patterns of accumulation of cardiac mutations provide a paradigm to understand the influence of genomic aging on age-related heart disease.


2020 ◽  
Author(s):  
Kristina Ulicna ◽  
Giulia Vallardi ◽  
Guillaume Charras ◽  
Alan R. Lowe

ABSTRACTSingle-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, which arises from the interplay or deterministic and stochastic processes. For example, the molecular mechanisms of cell cycle control are well characterised, yet the observed distribution of cell cycle durations in a population of cells is heterogenous. This variability may be governed either by stochastic processes, inherited in a deterministic fashion, or some combination of both. Previous studies have shown poor correlations within lineages when observing direct ancestral relationships but remain correlated with immediate relatives. However, assessing longer-range dependencies amid noisy data requires significantly more observations, and demands the development of automated procedures for lineage tree reconstruction. Here, we developed an open-source Python library, btrack, to facilitate retrieval of deep lineage information from live-cell imaging data. We acquired 3,500 hours of time-lapse microscopy data of epithelial cells in culture and used our software to extract 22,519 fully annotated single-cell trajectories. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results and achieves state-of-the-art performance without the requirement for manual curation of the tracker output data. To demonstrate the robustness of our supervision-free cell tracking pipeline, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships, for up to eight generations, and up to fourth cousin relationships. The extracted lineage tree dataset represents approximately two orders of magnitude more data, and longer-range dependencies, than in previous studies of cell cycle heritability. Our results extend the range of observed correlations and suggest that strong heritable cell cycling is present. We envisage that our approach could be extended with additional live-cell reporters to provide a detailed quantitative characterisation of biochemical and mechanical origins to cycling heterogeneity in cell populations.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S9) ◽  
Author(s):  
Xingyu Yang ◽  
Christopher M. Tipton ◽  
Matthew C. Woodruff ◽  
Enlu Zhou ◽  
F. Eun-Hyung Lee ◽  
...  

Abstract Background B cell affinity maturation enables B cells to generate high-affinity antibodies. This process involves somatic hypermutation of B cell immunoglobulin receptor (BCR) genes and selection by their ability to bind antigens. Lineage trees are used to describe this microevolution of B cell immunoglobulin genes. In a lineage tree, each node is one BCR sequence that mutated from the germinal center and each directed edge represents a single base mutation, insertion or deletion. In BCR sequencing data, the observed data only contains a subset of BCR sequences in this microevolution process. Therefore, reconstructing the lineage tree from experimental data requires algorithms to build the tree based on partially observed tree nodes. Results We developed a new algorithm named Grow Lineages along Minimum Spanning Tree (GLaMST), which efficiently reconstruct the lineage tree given observed BCR sequences that correspond to a subset of the tree nodes. Through comparison using simulated and real data, GLaMST outperforms existing algorithms in simulations with high rates of mutation, insertion and deletion, and generates lineage trees with smaller size and closer to ground truth according to tree features that highly correlated with selection pressure. Conclusions GLaMST outperforms state-of-art in reconstruction of the BCR lineage tree in both efficiency and accuracy. Integrating it into existing BCR sequencing analysis frameworks can significant improve lineage tree reconstruction aspect of the analysis.


2020 ◽  
Author(s):  
Imre Derényi ◽  
Márton C. Demeter ◽  
Gergely J. Szöllősi

All the cells of a multicellular organism are the product of cell divisions that trace out a single binary tree, the so-called cell lineage tree. Because cell divisions are accompanied by replication errors, the shape of the cell lineage tree is one of the key determinants of how somatic evolution, which can potentially lead to cancer, proceeds. Cancer initiation usually requires the accumulation of a certain number of driver mutations. By mapping the accumulation of driver mutations into a graph theoretical problem, we show that in leading order of the mutation rate the probability of collecting a given number of driver mutations depends only on the distribution of the lineage lengths (irrespective of any other details of the cell lineage tree), and we derive a simple analytical formula for this probability. Our results are crucial in understanding how natural selection can shape the cell lineage trees of multicellular organisms in order to reduce their lifetime risk of cancer. In particular, our results highlight the significance of the longest cell lineages. Our analytical formula also provides a tool to quantify cancer susceptibility in theoretical models of tissue development and maintenance, as well as for empirical data on cell linage trees.Significance StatementA series of cell divisions starting from a single cell produce and maintain tissues of multicellular organisms. Somatic evolution, including the development of cancer, takes place along the cell lineage tree traced out by these cell divisions. A fundamental question in cancer research is how the lifetime risk of cancer depends on the properties of an arbitrary cell lineage tree. Here we show that for small mutation rates (which is the case in reality) the distribution of the lineage lengths alone determines cancer risk, and that this risk can be described by a simple analytical formula. Our results have far-reaching implications not only for cancer research, but also for evolutionary biology in general.


Sign in / Sign up

Export Citation Format

Share Document