scholarly journals Multimodal Single-Cell Profiling Defines the Epigenetic Determinants of Chronic Lymphocytic Leukemia Evolution

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1312-1312
Author(s):  
Ronan Chaligne ◽  
Federico Gaiti ◽  
Franco Izzo ◽  
Steven Kothen-Hill ◽  
Hongcang Gu ◽  
...  

Abstract Genetic, epigenetic and transcriptional heterogeneity cooperate to fuel cancer's ability to evolve and adapt to therapy. In chronic lymphocytic leukemia (CLL), we have shown through bulk DNA methylation (DNAme) sequencing that the growing CLL populations diversify through stochastic DNAme changes (epimutations), impacting transcriptional heterogeneity, clonal evolution and clinical outcome. To directly integrate across epigenetic, genetic and transcriptional intra-leukemic cell-to-cell variation, we developed a high-throughput multi-modality platform that jointly interrogates the methylome, transcriptome and genetic driver mutations from the same single cell (Fig. A). We applied it to >2,000 B cells from 6 healthy donors and 12 CLL samples. We found that the common clonal CLL origin resulted in an elevated but uniform epimutation rate (i.e., low cell-to-cell epimutation variability). In contrast, in index sorted B cell subsets, ranging in maturity from naïve B cells (CD27-IgM+IgD+++IgG-) to memory B cells (CD27+IgG+), variable epimutation rates reflect cells with diverse evolutionary ages across the B cell differentiation trajectory (Fig. B). Thus, we posited that epimutation can serve as a "molecular clock", enabling high-resolution lineage reconstruction, applicable directly to patient samples. CLL lineage tree topology revealed earlier branching, and longer branch lengths than normal B cells, consistent with rapid drift after transformation, and a greater proliferative history (Fig. C). In contrast to CLL topologies, non-clonal normal B cell trees provided a smaller increase in clustering accuracy compared with parsimony-based trees (P < 0.001; Fig. D). To validate the inferred tree topology, we leveraged our multi-modal capture of DNAme and genetic drivers in single cells. Indeed, genetic subclones mapped accurately to distinct clades inferred solely based on epimutation information [e.g., a clade composed of SF3B1 mutants and another clade composed of SF3B1 wild-type cells (P = 7 x 10-9; Fig. E, F)]. Using the joint single-cell transcriptional profiling, we found that cells in SF3B1 mutated clade also displayed higher alternative 3' splicing than their wild-type counterparts (P = 0.01526; Fig. G). Cells belonging to SF3B1 mutated clade were marked by expression changes in genes related to DNA damage (e.g., KLF8) and Notch signaling (e.g., DTX4) (P < 0.05; Fig. H, I). The direct linking of single-cell transcriptional data with lineage identity also showed that transcriptional similarity between cells decreases as a function of their lineage distance (P < 0.05; Fig. K). Notably, the molecular clock feature of epimutations enabled precise timing of subclonal divergence event in the CLL's evolutionary history, estimated to have occurred 2180±219 days after the emergence of the parental clone (Fig. J). To examine potential lineage biases during therapy, we performed serial multimodal single-cell profiling of a CLL patient without subclonal genetic drivers, prior to and during ibrutinib-associated lymphocytosis. The lineage trees revealed a distinct clade of cells preferentially expelled from the lymph node, marked by a distinct transcriptional profile, likely representing ibrutinib-sensitive cells. Lastly, we hypothesized that frequent epigenetic modifier mutations seen in hematological malignancies may increase the epimutation rate promoting intra-leukemic cellular diversity. To test this hypothesis, we applied our multi-modality single-cell platform to cells from TET2 knock-out (KO) mouse models, and observed higher epimutation rates, closely associated with higher cell-to-cell transcriptional heterogeneity compared with wild-type cells (P < 0.0001; Fig. L, M). In summary, we revealed that CLL show uniformly elevated epimutation rates, reflecting the common evolutionary age of these cells. By leveraging the heritable information captured through epimutation data, we provided a native lineage tracing applicable directly to patient samples. With this approach, we showed that CLL lineage topology exhibit early branching and long-branch length, consistent with exponential growth. Finally, we demonstrated that multimodal single-cell profiling enables projection of genetic and transcriptional identity onto the lineage tree, providing a direct measurement of the heritability of transcriptional profiles as a function of lineage distance. Figure. Figure. Disclosures Wu: Neon Therapeutics: Equity Ownership.

Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


2017 ◽  
Vol 39 (2) ◽  
pp. 141-144
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O E Ruzhinska ◽  
I M Skorokhod ◽  
O G Alkhimova

Aim: The genetic mechanisms of resistance to chemotherapy in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (B-CLL/SLL) are not clear. We aimed to determine the peculiarities of abnormal karyotype formation in bone marrow (BM) cells and peripheral blood (PB) blast transformed B-cells in relapse of B-CLL/SLL. Materials and Methods: Cytogenetic GTG banding technique and molecular cytogenetic in interphase cells (i-FISH) studies of BM cells and PB blast transformed B-lymphocytes were performed in 14 patients (10 males and 4 females) with B-CLL/SLL. Results: The results of karyotyping BM and PB cells revealed the heterogeneity of cytogenetic abnormalities in combined single nosological group of B-CLL/SLL. In PB B-cells, chromosome abnormalities related to a poor prognosis group were registered 2.5 times more often than in BM cells. Additional near tetraploid clones that occurred in 57.1% cases were the peculiar feature of BM cell karyotypes. Chromosomal rearrangements characteristic of the group of adverse cytogenetic prognosis were revealed in all cases from which in 2 cases by karyotyping BM cells, in 6 cases in PB B-cells and in 8 cases by the i-FISH method in BM cells, i.e. their detection frequency was 3 times higher in PB B-cells and 4 times higher when analyzing by i-FISH in BM cells. Conclusions: Mismatch in abnormal karyotypes in BM and PB B-cells by the presence of quantitative and structural chromosomal rearrangements may be indicative of simultaneous and independent processes of abnormal clone formation in the lymph nodes and BM hematopoietic cells. Accumulation the information about previously unidentified chromosomal rearrangements in relapse of the disease may help to understand the ways of resistance formation to chemotherapy.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3316-3325 ◽  
Author(s):  
Andrea Bürkle ◽  
Matthias Niedermeier ◽  
Annette Schmitt-Gräff ◽  
William G. Wierda ◽  
Michael J. Keating ◽  
...  

Abstract CXCL13 is a homeostatic chemokine for lymphocyte homing and positioning within follicles of secondary lymphoid tissues, acting through its cognate receptor, CXCR5. Moreover, the CXCR5-CXCL13 axis plays a unique role in trafficking and homing of B1 cells. Here, we report that chronic lymphocytic leukemia (CLL) B cells express high levels of functional CXCR5. CXCR5 expression levels were similar on CLL B cells and normal CD5+ B cells, and higher compared with normal CD5− B cells, follicular B-helper T cells (TFH cells), or neoplastic B cells from other B-cell neoplasias. Stimulation of CLL cells with CXCL13 induces actin polymerization, CXCR5 endocytosis, chemotaxis, and prolonged activation of p44/42 mitogen-activated protein kinases. Anti-CXCR5 antibodies, pertussis toxin, and wortmannin inhibited chemotaxis to CXCL13, demonstrating the importance of Gi proteins and PI3 kinases for CXCR5 signaling. Moreover, CLL patients had significantly higher CXCL13 serum levels than volunteers, and CXCL13 levels correlated with β2 microglobulin. We detected CXCL13 mRNA expression by nurselike cells, and high levels of CXCL13 protein in supernatants of CLL nurselike cell cultures. By immunohistochemistry, we detected CXCL13+ expression by CD68+ macrophages in situ within CLL lymph nodes. These data suggest that CXCR5 plays a role in CLL cell positioning and cognate interactions between CLL and CXCL13-secreting CD68+ accessory cells in lymphoid tissues.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 941-947 ◽  
Author(s):  
Raymond S. Douglas ◽  
Renold J. Capocasale ◽  
Roberta J. Lamb ◽  
Peter C. Nowell ◽  
Jonni S. Moore

Abstract Chronic lymphocytic leukemia (CLL) is the most common leukemia of the western world and is characterized by a slowly progressing accumulation of clonal CD5+ B cells. Our laboratory has investigated the role of transforming growth factor-β (TGF-β) and interleukin-4 (IL-4) in the pathogenesis of B-cell expansion in CLL. In vitro addition of TGF-β did not increase spontaneous apoptosis of B cells from most CLL patients, as determined using the TUNEL method, compared with a twofold increase observed in cultures of normal B cells. There was similar expression of TGF-β type II receptors on both CLL B cells and normal B cells. In contrast to apoptosis, CLL B-cell proliferation was variably inhibited with addition of TGF-β. In vitro addition of IL-4, previously reported to promote CLL B-cell survival, dramatically reduced spontaneous apoptosis of CLL B cells compared with normal B cells. CLL B-cell expression of IL-4 receptors was increased compared to normal B cells. Thus, our results show aberrant apoptotic responses of CLL B cells to TGF-β and IL-4, perhaps contributing to the relative expansion of the neoplastic clone.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1470-1474 ◽  
Author(s):  
DE Hammerschmidt ◽  
C Jeanneret ◽  
M Husak ◽  
M Lobell ◽  
HS Jacob

Abstract A nonanemic chronic lymphocytic leukemia patient with nearly 500,000 lymphocytes/microL underwent leukapheresis when she presented with CNS symptoms and retinal vascular engorgement. Respiratory distress developed during the cell separator run, which led us to ask whether the procedure could have changed the adhesive properties of her cells. C5a desarginine, N-f-Met-Leu-Phe, adenosine diphosphate, and collagen all failed to aggregate her lymphocytes in vitro, but arachidonic acid, excess free calcium, and 4 mumol/L epinephrine did aggregate the cells. Arachidonate-induced aggregation appeared to be a toxic phenomenon: the ED50 for aggregation was statistically indistinguishable from that for cytotoxicity, and aspirin only mildly blunted the response. In contrast, epinephrine-induced aggregation was not associated with lactic dehydrogenase release or the loss of trypan blue exclusion and was blunted by propranolol; radiopindolol-binding studies confirmed the presence of a beta-adrenergic receptor. There were approximately 3,000 receptors/cell, with no statistically significant difference between normal and chronic lymphocytic leukemia B cells or between B cells and T cells (separated by rosetting techniques). The Kd for the B cells' receptor, however, was less than that for T cells by a factor of ten (P less than .01). We conclude that B cells may aggregate when stimulated and that they--like T cells--have beta-adrenergic receptors. Adrenergically mediated changes in B cell adhesiveness may play a role in regulating lymphocyte traffic; in the rare patient with truly enormous B cell counts, we postulate that they may be an occasional cause of morbidity.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1586-1594 ◽  
Author(s):  
M Dono ◽  
S Hashimoto ◽  
F Fais ◽  
V Trejo ◽  
SL Allen ◽  
...  

Peripheral blood mononuclear cells from five patients with IgG+ B-type chronic lymphocytic leukemia (B-CLL) were analyzed for the presence of clone-specific Ig H chain variable region gene mRNA transcripts linked to C mu and/or C alpha. This was assessed by (1) comparing the lengths of portions of the VHDJH of the IgG+ CLL clones with those of the mu and alpha isotype-expressing B cells, (2) performing clone-specific endonuclease digestion studies, and (3) determining the DNA sequences of the mu and alpha isotype-expressing cDNA. Thus, when B-cell mRNA from these five patients were reverse transcribed with C gamma-specific primers and then amplified by polymerase chain reaction, dominant cDNA were found with lengths corresponding to those of the IgG+ CLL B cell. In addition, in four cases, cDNA of lengths identical to those of the CLL B cell were detected when mRNA was reverse transcribed and amplified using c mu- and/or C alpha-specific primers, strongly suggesting clonal relatedness. These CLL-related mu- and alpha- expressing cDNA were present in greater amounts that unrelated (non- CLL) mu- and alpha-expressing cDNA from normal B cells that used genes of the same VH family. When the sequences of these CLL-related C mu- and C alpha-expressing cDNA were compared with those of the IgG+ CLL clones, it was clear that they were derived from the same ancestral gene as the IgG-expressing CLL B cell, thus documenting their common origin. Finally, nucleotide point mutations were observed in the mu- and alpha-expressing cDNA of certain patients, indicating divergence with the CLL. These data suggest that IgM+ B cells, which are precursors of the leukemic B cells, exist in increased numbers in the blood of most patients with IgG+ B-CELL and that these cells may differentiate, accumulate V genes mutations, and undergo isotype switching in vivo. In addition, the data are consistent with a sequential-hit model for the evolution of CLL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 178-178
Author(s):  
Stefania Gobessi ◽  
Aleksandar Petlickovski ◽  
Luca Laurenti ◽  
Dimitar G. Efremov

Abstract The protein tyrosine kinase ZAP-70 is expressed at high levels in leukemic B-cells from chronic lymphocytic leukemia (CLL) patients with progressive disease and short survival. ZAP-70 is a key component of the proximal T-cell receptor signaling pathway and is highly homologous to Syk, an important B-cell receptor signaling (BCR) molecule. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is still not well understood. In T-cells, upon TCR stimulation ZAP-70 becomes phosphorylated on Tyr319 by the Src-like kinase Lck, which results in the release of the ZAP-70 kinase domain from an autoinhibited state to a fully active conformation. The Tyr319 site in ZAP-70 corresponds to the Tyr352 site in Syk, which is phosphorylated in B-cells following BCR stimulation. We therefore investigated the activation status of ZAP-70 and Syk in BCR stimulated CLL B-cells, using phosphorylation of Tyr319 and Tyr352 as markers of their activation. Analysis of 10 ZAP-70-positive CLL samples by immunoblotting with the phospho-ZAP70Tyr319/SykTyr352 antibody revealed that ZAP-70 is not phosphorylated at this site either before or after BCR stimulation, although in control experiments with Jurkat T-cells ZAP-70 became phosphorylated on Tyr319 upon TCR stimulation. Moreover, the Tyr352 site in Syk was phosphorylated following BCR stimulation in 6 of the 10 CLL B-cell samples. To further investigate the reasons for the unexpected lack of ZAP-70 activation in CLL B-cells, we produced stable transfectants of the BJAB lymphoma B-cell line that expressed ZAP-70 at levels similar to those found in CLL cases with progressive disease. In agreement with the CLL B-cell experiments, the Tyr319 site in ZAP-70 was not phosphorylated either before or after BCR stimulation. Since phosphorylation of Tyr319 is Lck-dependent in T-cells, and this kinase is expressed also in CLL B-cells, we ectopically expressed Lck in the ZAP-70-positive BJAB clones. Again, the Tyr319 site was not phosphorylated, indicating that ZAP-70 does not undergo activation of the kinase domain also in this cellular system. In contrast, BCR crosslinking in BJAB cells induced significant phosphorylation of Tyr352 in Syk, which was further enhanced in the clones that coexpressed ZAP-70. Furthermore, analysis of downstream signaling pathways following BCR stimulation showed stronger and prolonged activation of ERK and to a lesser extent Akt in the ZAP-70 positive clones, whereas no difference was observed in terms of activation of PLC-γ 2, JNK and degradation of the NF-kB inhibitor IkB. These data indicate that ZAP-70 does not undergo full activation in B-cells, but can still enhance activation of certain downstream BCR signaling pathways, possibly by affecting the activity of the related PTK Syk.


Sign in / Sign up

Export Citation Format

Share Document