scholarly journals High content genome-wide siRNA screen to investigate the coordination of cell size and RNA production

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Micha Müller ◽  
Lucas Pelkmans ◽  
Scott Berry

AbstractCoordination of RNA abundance and production rate with cell size has been observed in diverse organisms and cell populations. However, how cells achieve such ‘scaling’ of transcription with size is unknown. Here we describe a genome-wide siRNA screen to identify regulators of global RNA production rates in HeLa cells. We quantify the single-cell RNA production rate using metabolic pulse-labelling of RNA and subsequent high-content imaging. Our quantitative, single-cell measurements of DNA, nascent RNA, proliferating cell nuclear antigen (PCNA), and total protein, as well as cell morphology and population-context, capture a detailed cellular phenotype. This allows us to account for changes in cell size and cell-cycle distribution (G1/S/G2) in perturbation conditions, which indirectly affect global RNA production. We also take advantage of the subcellular information to distinguish between nascent RNA localised in the nucleolus and nucleoplasm, to approximate ribosomal and non-ribosomal RNA contributions to perturbation phenotypes. Perturbations uncovered through this screen provide a resource for exploring the mechanisms of regulation of global RNA metabolism and its coordination with cellular states.

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0161965 ◽  
Author(s):  
Daniel Andritschke ◽  
Sabrina Dilling ◽  
Mario Emmenlauer ◽  
Tobias Welz ◽  
Fabian Schmich ◽  
...  

2020 ◽  
Author(s):  
Ximena Contreras ◽  
Amarbayasgalan Davaatseren ◽  
Nicole Amberg ◽  
Andi H. Hansen ◽  
Johanna Sonntag ◽  
...  

Cancer Cell ◽  
2013 ◽  
Vol 24 (2) ◽  
pp. 182-196 ◽  
Author(s):  
Fabio Petrocca ◽  
Gabriel Altschuler ◽  
Shen Mynn Tan ◽  
Marc L. Mendillo ◽  
Haoheng Yan ◽  
...  

2010 ◽  
Vol 18 (6) ◽  
pp. 1041-1052 ◽  
Author(s):  
Marta M. Lipinski ◽  
Greg Hoffman ◽  
Aylwin Ng ◽  
Wen Zhou ◽  
Bénédicte F. Py ◽  
...  

2020 ◽  
Author(s):  
Tao Hu ◽  
Tao Wang ◽  
Huiying Li ◽  
Misganaw Wassie ◽  
Liang Chen

Abstract Background: Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turfgrass species. The low tiller density and size dramatically limits its turf performance and forage yield. MicroRNAs (miRNA)-genes modules play critical roles in tiller development in plants. In this study, a genome-wide small RNA profiling was carried out in two tall fescue genotypes contrasting for tillering production (‘Ch-3’, high tiller production rate and ‘Ch-5’, low tiller production rate) andtwo types of tissue samples at different tillering development stage (Pre-tillering, grass before tillering; Tillering, grass after tillering). ‘Ch-3’, ‘Ch-5’, Pre-tillering, and Tillering samples were analyzed using high-throughput RNA sequencing.Results: A total of 222 million high-quality clean reads were generated and 208 miRNAs were discovered, including 148 known miRNAs belonging to 70 families and 60 novel ones. Furthermore, 18 miRNAs were involved in tall fescue tiller development process. Among them, 14 miRNAs displayed increased abundance in both Ch-3 and Tillering plants compared with that in Ch-5 and Pre-tillering plants and were positive with tillering, while another four miRNAs were negative with tiller development. Out ofthe three miRNAs osa-miR156a, zma-miR528a-3p and osa-miR444b.2, the rest of 15 miRNAs were newfound controllers mediating tiller development in plants. Based on our previous full-length transcriptome analysis in tall fescue, 2 8927 potential target genes were discoveredfor all identified miRNAs. Most of the 212 target genes of the 18 miRNAs were dominantly enriched into “ubiquitin-mediated proteolysis”, “phagosome”, “fatty acid biosynthesis”, “oxidative phosphorylation”, and “biosynthesis of unsaturated fatty acids” KEGG pathways.Conclusions: This is the first genome-wide miRNA profiles analysis to identifyregulators involved in tiller development in cool-season turfgrass. Tillering related 18 miRNAs and their 212 target genes provide novel information for the understanding of the molecular mechanisms of miRNA-genes mediated tiller development in cool-season turfgrass.


2020 ◽  
Author(s):  
Tao Hu ◽  
Tao Wang ◽  
Huiying Li ◽  
Misganaw Wassie ◽  
Huawei Xu ◽  
...  

Abstract Background: Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turfgrass species. The low tiller density and size dramatically limits its turf performance and forage yield. MicroRNAs (miRNA)-genes modules play critical roles in tiller development in plants. In this study, a genome-wide small RNA profiling was carried out in two tall fescue genotypes contrasting for tillering production (‘Ch-3’, high tiller production rate and ‘Ch-5’, low tiller production rate) and two types of tissue samples at different tillering development stage (Pre-tillering, grass before tillering; Tillering, grass after tillering). ‘Ch-3’, ‘Ch-5’, Pre-tillering, and Tillering samples were analyzed using high-throughput RNA sequencing. Results: A total of 222 million high-quality clean reads were generated and 208 miRNAs were discovered, including 148 known miRNAs belonging to 70 families and 60 novel ones. Furthermore, 18 miRNAs were involved in tall fescue tiller development process. Among them, 14 miRNAs displayed increased abundance in both Ch-3 and Tillering plants compared with that in Ch-5 and Pre-tillering plants and were positive with tillering, while another four miRNAs were negative with tiller development. Out of the three miRNAs osa-miR156a, zma-miR528a-3p and osa-miR444b.2, the rest of 15 miRNAs were newfound and associated with tiller development in plants. Based on our previous full-length transcriptome analysis in tall fescue, 2 8927 potential target genes were discovered for all identified miRNAs. Most of the 212 target genes of the 18 miRNAs were dominantly enriched into “ubiquitin-mediated proteolysis”, “phagosome”, “fatty acid biosynthesis”, “oxidative phosphorylation”, and “biosynthesis of unsaturated fatty acids” KEGG pathways. In addition, bdi-miR167e-3p targets two kinase proteins EIF2AK4 and IRAK4, and osa-miR397a targets auxin response factor 5, which may be the significant miRNA-genes controllers in tillering development. Conclusions: This is the first genome-wide miRNA profiles analysis to identify regulators involved in tiller development in cool-season turfgrass. Tillering related 18 miRNAs and their 212 target genes provide novel information for the understanding of the molecular mechanisms of miRNA-genes mediated tiller development in cool-season turfgrass.


Sign in / Sign up

Export Citation Format

Share Document