scholarly journals Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Josie L. Hilley ◽  
Brock D. Weers ◽  
Sandra K. Truong ◽  
Ryan F. McCormick ◽  
Ashley J. Mattison ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151271 ◽  
Author(s):  
Josie Hilley ◽  
Sandra Truong ◽  
Sara Olson ◽  
Daryl Morishige ◽  
John Mullet

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 649a-649
Author(s):  
Nihal C. Rajapakse ◽  
Margaret J. McMahon ◽  
John W. Kelly

The response of `Bright Golden Anne' and `Spears' chrysanthemum plants to EOD-R or FR light was evaluated to determine the involvement of phytochrome in regulation of plant morphology under CuSO4 filters. Light transmitted through the CuSO4 filter significantly reduced height, internode length and stem dry weight of `BGA' and `Spears' chrysanthemum plants. However, the degree of response varied with the cultivar. Exposure to EOD-FR reversed the reduction of plant height, internode length and the stem dry weight caused by the light transmitted through CuSO4 filters to a level comparable with control plants. Exposure to EOD-FR did not significantly alter height and stem dry weight under control filter Exposure to EOD-R light reduced the height and stem dry weight of `BGA' plants grown under control filter but EOD-R had no effect under CuSO4 filters. In `Spears' plants, EOD-R caused stem dry weight reduction under control filters, but did not reduce stem or internode elongation. The results suggest phytochrome may be involved in controlling plant response under CuSO4 filters. However, there are evidence to indicate that an additional mechanism may be acting on stem/internode elongation.


2020 ◽  
Vol 71 (16) ◽  
pp. 4621-4624
Author(s):  
Ernesto Igartua ◽  
Bruno Contreras-Moreira ◽  
Ana M Casas

This article comments on: Dixon LE, Pasquariello M, Boden SA. 2020. TEOSINTE BRANCHED1 regulates height and stem internode length in bread wheat. Journal of Experimental Botany 71, 4742–4750.


2001 ◽  
Vol 353 (3) ◽  
pp. 735
Author(s):  
K. PEYROLLIER ◽  
E. HAJDUCH ◽  
A. GRAY ◽  
G. J. LITHERLAND ◽  
A. R. PRESCOTT ◽  
...  

2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2001 ◽  
Vol 268 (6) ◽  
pp. 1518-1527 ◽  
Author(s):  
Ricardo B. Maccioni ◽  
Carola Otth ◽  
Ilona I. Concha ◽  
Juan P. Munoz

2001 ◽  
Vol 120 (5) ◽  
pp. A528-A528
Author(s):  
S SAKSENA ◽  
R GILL ◽  
S TYAGI ◽  
I SYED ◽  
A CHINNAKOTLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document