internode elongation
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 31)

H-INDEX

25
(FIVE YEARS 4)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2421
Author(s):  
Yanan Niu ◽  
Tianxiao Chen ◽  
Chenchen Zhao ◽  
Meixue Zhou

Crop height not only determines plant resistance to lodging and crowding, but also affects crop architecture, apical dominance, biomass, and mechanical harvesting. Plant height is determined by the internode elongation, regulated by genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis or related signaling networks. Plants’ genetic inability to synthesize or respond to GAs and BRs induce dwarfness. However, the signaling mechanisms of GAs and BRs for controlling plant height individually or collectively are still unclear. Since stem mechanically supports plant during the whole life span, components that affect stem physical strength are also important to crop lodging resistance. One of the major components is lignin, which forms stem structure, thus contributing to crop lodging resistance. In this review, we looked into the reported genes involved in lignin, GAs, and BRs biosynthesis and summarized the signaling networks centered by these genes. Then, we filled the knowledge gap by modifying plant height through interrupting normal GA and BR metabolism utilizing core gene inhibitors. Therefore, we highly endorsed the current approaches of using plant growth regulators (PRGs) to maintain an ideal plant height under lodging stress, and proposed possibilities of modifying crop culm strength against lodging as well.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1737
Author(s):  
Fuxin Shan ◽  
Rui Zhang ◽  
Jin Zhang ◽  
Chang Wang ◽  
Xiaochen Lyu ◽  
...  

Excessive plant height is an important factor that can lead to lodging, which is closely related to soybean yield. Gibberellins are widely used as plant growth regulators in agricultural production. Gibberellic acid (GA3), one of the most effective active gibberellins, has been used to regulate plant height and increase yields. The mechanism through which GA3 regulates internode elongation has been extensively investigated. In 2019 and 2020, we applied GA3 to the stems, leaves, and roots of two soybean cultivars, Heinong 48 (a high-stalk cultivar) and Henong 60 (a dwarf cultivar), and GA3 was also applied to plants whose apical meristem was removed or to girded plants to compare the internode length and stem GA3 content of soybean plants under different treatments. These results suggested that the application of GA3 to the stems, leaves, and roots of soybean increased the internode length and GA3 content in the stems. Application of GA3 decreased the proportion of the pith in the soybean stems and primary xylem while increasing the proportion of secondary xylem. The apical meristem is an important site of GA3 synthesis in soybean stems and is involved in the regulation of stem elongation. GA3 was shown to be transported acropetally through the xylem and laterally between the xylem and phloem in soybean stems. We conclude that the GA3 level in stems is an important factor affecting internode elongation.


Rice Science ◽  
2021 ◽  
Vol 28 (4) ◽  
pp. 313-316
Author(s):  
Yang Yachun ◽  
Li Juan ◽  
Li Hao ◽  
Xu Zuntao ◽  
Qin Ruiying ◽  
...  
Keyword(s):  

2021 ◽  
Vol 55 (3) ◽  
pp. 273-283
Author(s):  
Masaki J. KOBAYASHI ◽  
Kevin Kit Siong NG ◽  
Soon Leong LEE ◽  
Norwati MUHAMMAD ◽  
Naoki TANI

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William L. Bauerle

AbstractThree different cultivars of Humulus lupulus L. were subjected to a regime of internode touch and bending under greenhouse conditions. Experiments were performed to assess intraspecific variability in plant mechanosensing, flower quality, and yield to quantify the thigmomorphogenic impact on plant compactness and flowering performance. Touching and/or touching plus bending the plant shoot internodes located in the apical meristem zone decreased internode elongation and increased width. The growth responses were due partly to touching and/or touching plus bending perturbation, 25.6% and 28% respectively. Growth of new tissue within the local apical portion of the bine continued to remain mechanosensitive. The number of nodes and female flowers produced was unaffected by either type of mechanical stress. The study provides evidence that thigmomorphogenic cues can be used as a hop crop management tool to increase bine compactness and increase node density per unit area. The findings have broad implications for hop production; production can more readily take place in a confined greenhouse space with the aid of mechanical stimulation to control plant growth without sacrificing yield or flower quality.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhaobin Ren ◽  
Xing Wang ◽  
Qun Tao ◽  
Qing Guo ◽  
Yuyi Zhou ◽  
...  

Abstract Background Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). Results In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. Conclusions These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Wang ◽  
Ying Yin ◽  
Xiuxiu Jing ◽  
Menglei Wang ◽  
Miao Zhao ◽  
...  

Mepiquat chloride (MC) is the most important plant growth retardant that is widely used in cotton (Gossypium hirsutum L.) production to suppress excessive vegetative growth and improve plant architecture. MicroRNAs (miRNAs) are important gene expression regulators that control plant growth and development. However, miRNA-mediated post-transcriptional regulation in MC-induced growth inhibition remains unclear. In this study, the dynamic expression profiles of miRNAs responsive to MC in cotton internodes were investigated. A total of 508 known miRNAs belonging to 197 families and five novel miRNAs were identified. Among them, 104 miRNAs were differentially expressed at 48, 72, or 96 h post MC treatment compared with the control (0 h); majority of them were highly conserved miRNAs. The number of differentially expressed miRNAs increased with time after treatment. The expression of 14 known miRNAs was continuously suppressed, whereas 12 known miRNAs and one novel miRNA were continuously induced by MC. The expression patterns of the nine differentially expressed miRNAs were verified using qRT-PCR. The targets of the known and novel miRNAs were predicted. Four conserved and six novel targets were validated using the RLM-5′ RACE assay. This study revealed that miRNAs play crucial regulatory roles in the MC-induced inhibition of internode elongation. It can improve our understanding of post-transcriptional gene regulation in MC-mediated growth inhibition and could potentially facilitate the breeding of dwarf cotton.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ka Man Jasmine Yu ◽  
Brian McKinley ◽  
William L. Rooney ◽  
John E. Mullet

AbstractThe stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to investigate the impact shading has on stem growth and biomass accumulation. Increased planting density induced a > 2-fold increase in sorghum internode length and a ~ 22% decrease in stem diameter, a typical shade avoidance response. Shade-induced internode elongation was due to an increase in cell length and number of cells spanning the length of internodes. SbGA3ox2 (Sobic.003G045900), a gene encoding the last step in GA biosynthesis, was expressed ~ 20-fold higher in leaf collar tissue of developing phytomers in plants grown at high vs. low density. Application of GA3 to bioenergy sorghum increased plant height, stem internode length, cell length and the number of cells spanning internodes. Prior research showed that sorghum plants lacking phytochrome B, a key photoreceptor involved in shade signaling, accumulated more GA1 and displayed shade avoidance phenotypes. These results are consistent with the hypothesis that increasing planting density induces expression of GA3-oxidase in leaf collar tissue, increasing synthesis of GA that stimulates internode elongation.


Sign in / Sign up

Export Citation Format

Share Document