scholarly journals Basal hypersecretion of glucagon and insulin from palmitate-exposed human islets depends on FFAR1 but not decreased somatostatin secretion

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Kristinsson ◽  
E. Sargsyan ◽  
H. Manell ◽  
D. M. Smith ◽  
S. O. Göpel ◽  
...  
1984 ◽  
Vol 247 (2) ◽  
pp. E221-E227
Author(s):  
M. D. Ruggere ◽  
Y. C. Patel

We reported previously that pancreatic somatostatin and glucagon content and D and A cells are reduced in spontaneously diabetic BB rats while portal plasma levels of these hormones are elevated but normalized by insulin therapy. Presently, we have characterized the basal and stimulated (glucose, theophylline, arginine) release of islet hormones from perfused pancreases of three groups: nondiabetic, untreated diabetic, and insulin-treated diabetic rats. Maximal glucagon and somatostatin release were significantly reduced in untreated diabetics. Treatment normalized glucagon but further reduced somatostatin secretion. Thus, hyperglucagonemia and hypersomatostatinemia cannot result from pancreatic hypersecretion but are of extrapancreatic (probably gut) origin. A theophylline-induced paradoxical inhibition of somatostatin secretion that was normalized by insulin was found in insulin-openic diabetic rats. This likely represents a secondary effect of insulin deficiency. One animal with the rare finding of spontaneous recovery from insulin-dependent diabetes was characterized as normoglycemic, hypoinsulinemic, hypersomatostatinemic, and normoglucagonemic. Normal basal and hyperglycemic insulin release was exhausted by more potent secretagogues. Somatostatin release was markedly exaggerated, whereas secretagogues had no significant effect on elevated basal glucagon output.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Despoina Aslanoglou ◽  
Suzanne Bertera ◽  
Marta Sánchez-Soto ◽  
R. Benjamin Free ◽  
Jeongkyung Lee ◽  
...  

AbstractDopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and β-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and β-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and β-cell targets to produce metabolic disturbances.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2119-P
Author(s):  
ADAM C. SWENSEN ◽  
YINYIN YE ◽  
ERCUMENT DIRICE ◽  
ROHIT KULKARNI ◽  
WEIJUN QIAN

Diabetes ◽  
1989 ◽  
Vol 38 (3) ◽  
pp. 386-396 ◽  
Author(s):  
N. M. Kneteman ◽  
D. Alderson ◽  
D. W. Scharp ◽  
P. E. Lacy

2007 ◽  
Vol 30 (4) ◽  
pp. 92 ◽  
Author(s):  
K Potter ◽  
K Park

Background: Pancreatic islet transplantation offers improved glycemic control in type 1 diabetic patients above standard insulin therapy, ideally minimizing macro- and microvascular complications of diabetes mellitus. However success is limited thus far, with fewer than 10% of patients retaining insulin independence at two years post-transplantation. In addition to immune rejection, many non-immune factors may promote long-term graft secretory dysfunction and loss of viable graft mass. One such important non-immune factor may be the formation of islet amyloid, a pathologic lesion of the islet in type 2 diabetes that contributes to the progressive loss of b cells in that disease and that has been shown to form rapidly in human islets transplanted into NOD.scid mice. Amyloid deposits are composed primarily of the b cell secretory product islet amyloid polypeptide (IAPP), are cytotoxic, and develop in environments in which b cells are stressed. Heparin sulfate is used as an anti-coagulant in clinical islet transplantation and to prevent the instant blood-mediated inflammatory reaction (IBMIR), which occurs upon contact between islets and blood and may destroy a substantial proportion of the grafted islet mass. However, heparin is also known to stimulate amyloid fibril formation. Methods: To determine whether heparin may enhance amyloid formation in human islets and contribute to graft failure, we cultured isolated human islets in the presence or absence of heparin sulfate (42 and 420 units/ml) for 2 weeks in 11.1 mM glucose. Results: Histological assessment of sections of cultured islets for the presence of amyloid (by thioflavin S staining) revealed a marked, concentration-dependent increase in amyloid deposition following culture in the presence of heparin. Quantitative analysis of these sections showed that the proportion of islet area comprised of amyloid was increased approximately 2-fold (0.15%±0.12% vs 0.46%±0.15% of islet area) following culture in 42 units/ml heparin, and the proportion of islets in which amyloid was detectable (amyloid prevalence) was also increased (35%±24% vs 68%±10% of islets). At 420 units/ml heparin, the amyloid area was even greater (0.23%±0.15% vs 0.97%±0.42% of islet area) as was the amyloid prevalence (53%±29% vs 81%±14% of islets). To affirm that heparin can stimulate IAPP fibrillogenesis and enhance IAPP toxicity, we incubated synthetic human IAPP in the presence of heparin and measured amyloid formation in real time by thioflavin T fluorescence, and cell toxicity by Alamar blue viability assay in transformed rat (INS-1) ß-cell cultures. Heparin stimulated IAPP fibril formation and increased death of INS-1 cells exposed to IAPP (78.2%±10.9% vs 51.8%±12.2% of control viability), suggesting that heparin stimulates IAPP aggregation and toxicity. Remarkably, preliminary assessment of human islets cultured in heparin did not show increased islet cell death by TUNEL staining or loss of insulin immunostaining. Conclusion: In summary, heparin increases amyloid formation in cultured human islets. Although our preliminary data does not suggest that heparin-induced amyloid formation contributes to islet cell death, we speculate that heparin-induced amyloid formation may contribute to graft dysfunction and that caution should be used in the clinical application of this drug in islet transplantation.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Katherine M. Gerber ◽  
Nicholas B. Whitticar ◽  
Daniel R. Rochester ◽  
Kathryn L. Corbin ◽  
William J. Koch ◽  
...  

Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.


Sign in / Sign up

Export Citation Format

Share Document