scholarly journals Bacterial membrane vesicles transport their DNA cargo into host cells

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Natalie J. Bitto ◽  
Ross Chapman ◽  
Sacha Pidot ◽  
Adam Costin ◽  
Camden Lo ◽  
...  
2021 ◽  
Vol 134 (11) ◽  
Author(s):  
Jeffrey S. Schorey ◽  
Yong Cheng ◽  
William R. McManus

ABSTRACT Intracellular bacterial pathogens spend portions of their life cycle both inside and outside host cells. While in these two distinct environments, they release or shed bacterial components, including virulence factors that promote their survival and replication. Some of these components are released through extracellular vesicles, which are either derived from the bacteria themselves or from the host cells. Bacteria- and host-derived vesicles have been studied almost exclusively in isolation from each other, with little discussion of the other type of secreted vesicles, despite the fact that both are generated during an in vivo infection and both are likely play a role in bacterial pathogenesis and host immunity. In this Review, we aim to bridge this gap and discuss what we know of bacterial membrane vesicles in their generation and composition. We will compare and contrast this with the composition of host-derived vesicles with regard to bacterial components. We will also compare host cell responses to the different vesicles, with a focus on how these vesicles modulate the immune response, using Mycobacterium, Listeria and Salmonella as specific examples for these comparisons.


2021 ◽  
Vol 22 (3) ◽  
pp. 1005
Author(s):  
Ella L. Johnston ◽  
Begoña Heras ◽  
Thomas A. Kufer ◽  
Maria Kaparakis-Liaskos

Bacterial membrane vesicles (BMVs) are nanoparticles produced by both Gram-negative and Gram-positive bacteria that can function to modulate immunity in the host. Both outer membrane vesicles (OMVs) and membrane vesicles (MVs), which are released by Gram-negative and Gram-positive bacteria, respectively, contain cargo derived from their parent bacterium, including immune stimulating molecules such as proteins, lipids and nucleic acids. Of these, peptidoglycan (PG) and lipopolysaccharide (LPS) are able to activate host innate immune pattern recognition receptors (PRRs), known as NOD-like receptors (NLRs), such as nucleotide-binding oligomerisation domain-containing protein (NOD) 1, NOD2 and NLRP3. NLR activation is a key driver of inflammation in the host, and BMVs derived from both pathogenic and commensal bacteria have been shown to package PG and LPS in order to modulate the host immune response using NLR-dependent mechanisms. Here, we discuss the packaging of immunostimulatory cargo within OMVs and MVs, their detection by NLRs and the cytokines produced by host cells in response to their detection. Additionally, commensal derived BMVs are thought to shape immunity and contribute to homeostasis in the gut, therefore we also highlight the interactions of commensal derived BMVs with NLRs and their roles in limiting inflammatory diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreia I. Pimenta ◽  
Nuno Bernardes ◽  
Marta M. Alves ◽  
Dalila Mil-Homens ◽  
Arsenio M. Fialho

AbstractBurkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.


2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


1972 ◽  
Vol 247 (1) ◽  
pp. 298-304 ◽  
Author(s):  
Steven A. Short ◽  
David C. White ◽  
H. Ronald Kaback

2021 ◽  
Vol 134 ◽  
pp. 72-85 ◽  
Author(s):  
William J. Gilmore ◽  
Ella L. Johnston ◽  
Lauren Zavan ◽  
Natalie J. Bitto ◽  
Maria Kaparakis-Liaskos

1973 ◽  
Vol 248 (10) ◽  
pp. 3551-3565 ◽  
Author(s):  
Frank J. Lombardi ◽  
John P. Reeves ◽  
H. Ronald Kaback

Sign in / Sign up

Export Citation Format

Share Document