scholarly journals Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Shoji Tatsumoto ◽  
Yasuhiro Go ◽  
Kentaro Fukuta ◽  
Hideki Noguchi ◽  
Takashi Hayakawa ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marina Braun ◽  
Annika Lehmbecker ◽  
Deborah Eikelberg ◽  
Maren Hellige ◽  
Andreas Beineke ◽  
...  

Abstract Background Bovine frontonasal dysplasias like arhinencephaly, synophthalmia, cyclopia and anophthalmia are sporadic congenital facial malformations. In this study, computed tomography, necropsy, histopathological examinations and whole genome sequencing on an Illumina NextSeq500 were performed to characterize a stillborn Limousin calf with frontonasal dysplasia. In order to identify private genetic and structural variants, we screened whole genome sequencing data of the affected calf and unaffected relatives including parents, a maternal and paternal halfsibling. Results The stillborn calf exhibited severe craniofacial malformations. Nose and maxilla were absent, mandibles were upwardly curved and a median cleft palate was evident. Eyes, optic nerve and orbital cavities were not developed and the rudimentary orbita showed hypotelorism. A defect centrally in the front skull covered with a membrane extended into the intracranial cavity. Aprosencephaly affected telencephalic and diencephalic structures and cerebellum. In addition, a shortened tail was seen. Filtering whole genome sequencing data revealed a private frameshift variant within the candidate gene ZIC2 in the affected calf. This variant was heterozygous mutant in this case and homozygous wild type in parents, half-siblings and controls. Conclusions We found a novel ZIC2 frameshift mutation in an aprosencephalic Limousin calf. The origin of this variant is most likely due to a de novo mutation in the germline of one parent or during very early embryonic development. To the authors’ best knowledge, this is the first identified mutation in cattle associated with bovine frontonasal dysplasia.


2020 ◽  
Author(s):  
Evin M. Padhi ◽  
Tristan J. Hayeck ◽  
Brandon Mannion ◽  
Sumantra Chatterjee ◽  
Marta Byrska-Bishop ◽  
...  

AbstractPrevious research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of de novo protein-coding variants within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2,671 families with autism, with a specific focus on de novo variation in enhancers with previously characterized in vivo activity. We identified three independent de novo mutations limited to individuals with autism in the enhancer hs737. These mutations result in similar phenotypic characteristics, affect enhancer activity in vitro, and preferentially occur in AAT motifs in the enhancer with predicted disruptions of transcription factor binding. We also find that hs737 is enriched for copy number variation in individuals with NDDs, is dosage sensitive in the human population, is brain-specific, and targets the NDD gene EBF3 that is genome-wide significant for protein coding de novo variants, demonstrating the importance of understanding all forms of variation in the genome.One Sentence SummaryWhole-genome sequencing in thousands of families reveals variants relevant to simplex autism in a brain enhancer of the well-established neurodevelopmental disorder gene EBF3.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253440
Author(s):  
Samantha Gunasekera ◽  
Sam Abraham ◽  
Marc Stegger ◽  
Stanley Pang ◽  
Penghao Wang ◽  
...  

Whole-genome sequencing is essential to many facets of infectious disease research. However, technical limitations such as bias in coverage and tagmentation, and difficulties characterising genomic regions with extreme GC content have created significant obstacles in its use. Illumina has claimed that the recently released DNA Prep library preparation kit, formerly known as Nextera Flex, overcomes some of these limitations. This study aimed to assess bias in coverage, tagmentation, GC content, average fragment size distribution, and de novo assembly quality using both the Nextera XT and DNA Prep kits from Illumina. When performing whole-genome sequencing on Escherichia coli and where coverage bias is the main concern, the DNA Prep kit may provide higher quality results; though de novo assembly quality, tagmentation bias and GC content related bias are unlikely to improve. Based on these results, laboratories with existing workflows based on Nextera XT would see minor benefits in transitioning to the DNA Prep kit if they were primarily studying organisms with neutral GC content.


2020 ◽  
Vol 29 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Jonas Carlsson Almlöf ◽  
Sara Nystedt ◽  
Aikaterini Mechtidou ◽  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
...  

AbstractBy performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanliang Jiang ◽  
Jianguo Lu ◽  
Eric Peatman ◽  
Huseyin Kucuktas ◽  
Shikai Liu ◽  
...  

2015 ◽  
Vol 25 (3) ◽  
pp. 426-434 ◽  
Author(s):  
Brock A. Peters ◽  
Bahram G. Kermani ◽  
Oleg Alferov ◽  
Misha R. Agarwal ◽  
Mark A. McElwain ◽  
...  

2015 ◽  
Vol 68 (10) ◽  
pp. 835-838 ◽  
Author(s):  
Björn A Espedido ◽  
Borce Dimitrijovski ◽  
Sebastiaan J van Hal ◽  
Slade O Jensen

AimsTo characterise the resistome of a multi-drug resistant Klebsiella pneumoniae (Kp0003) isolated from an Australian traveller who was repatriated to a Sydney Metropolitan Hospital from Myanmar with possible prosthetic aortic valve infective endocarditis.MethodsKp0003 was recovered from a blood culture of the patient and whole genome sequencing was performed. Read mapping and de novo assembly of reads facilitated in silico multi-locus sequence and plasmid replicon typing as well as the characterisation of antibiotic resistance genes and their genetic context. Conjugation experiments were also performed to assess the plasmid (and resistance gene) transferability and the effect on the antibiotic resistance phenotype.ResultsImportantly, and of particular concern, the carbapenem-hydrolysing β-lactamase gene blaNDM-4 was identified on a conjugative IncX3 plasmid (pJEG027). In this respect, the blaNDM-4 genetic context is similar (at least to some extent) to what has previously been identified for blaNDM-1 and blaNDM-4-like variants.ConclusionsThis study highlights the potential role that IncX3 plasmids have played in the emergence and dissemination of blaNDM-4-like variants worldwide and emphasises the importance of resistance gene surveillance.


Cell ◽  
2012 ◽  
Vol 151 (7) ◽  
pp. 1431-1442 ◽  
Author(s):  
Jacob J. Michaelson ◽  
Yujian Shi ◽  
Madhusudan Gujral ◽  
Hancheng Zheng ◽  
Dheeraj Malhotra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document