scholarly journals Immunologic targeting of CD30 eliminates tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nagako Sougawa ◽  
Shigeru Miyagawa ◽  
Satsuki Fukushima ◽  
Ai Kawamura ◽  
Junya Yokoyama ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Meng-Xue Xu ◽  
Li-Ping Liu ◽  
Yu-Mei Li ◽  
Yun-Wen Zheng

As a standard clinical treatment, platelet transfusion has been employed to prevent hemorrhage in patients with thrombocytopenia or platelet dysfunctions. Platelets also show therapeutic potential for aiding liver regeneration and bone healing and regeneration and for treating dermatological conditions. However, the supply of platelets rarely meets the rising clinical demand. Other issues, including short shelf life, strict storage temperature, and allogeneic immunity caused by frequent platelet transfusions, have become serious challenges that require the development of high-yielding alternative sources of platelets. Human pluripotent stem cells (hPSCs) are an unlimited substitution source for regenerative medicine, and patient-derived iPSCs can provide novel research models to explore the pathogenesis of some diseases. Many studies have focused on establishing and modifying protocols for generating functional induced platelets (iPlatelets) from hPSCs. To reach high efficiency production and eliminate the exogenous antigens, media supplements and matrix have been optimized. In addition, the introduction of some critical transgenes, such as c-MYC, BMI1, and BCL-XL, can also significantly increase hPSC-derived platelet production; however, this may pose some safety concerns. Furthermore, many novel culture systems have been developed to scale up the production of iPlatelets, including 2D flow systems, 3D rotary systems, and vertical reciprocal motion liquid culture bioreactors. The development of new gene-editing techniques, such as CRISPR/Cas9, can be used to solve allogeneic immunity of platelet transfusions by knocking out the expression of B2M. Additionally, the functions of iPlatelets were also evaluated from multiple aspects, including but not limited to morphology, structure, cytoskeletal organization, granule content, DNA content, and gene expression. Although the production and functions of iPlatelets are close to meeting clinical application requirements in both quantity and quality, there is still a long way to go for their large-scale production and clinical application. Here, we summarize the diverse methods of platelet production and update the progresses of iPlatelets. Furthermore, we highlight recent advances in our understanding of key transcription factors or molecules that determine the platelet differentiation direction.


2019 ◽  
Vol 116 (21) ◽  
pp. 10441-10446 ◽  
Author(s):  
Xiao Han ◽  
Mengning Wang ◽  
Songwei Duan ◽  
Paul J. Franco ◽  
Jennifer Hyoje-Ryu Kenty ◽  
...  

Polymorphic HLAs form the primary immune barrier to cell therapy. In addition, innate immune surveillance impacts cell engraftment, yet a strategy to control both, adaptive and innate immunity, is lacking. Here we employed multiplex genome editing to specifically ablate the expression of the highly polymorphic HLA-A/-B/-C and HLA class II in human pluripotent stem cells. Furthermore, to prevent innate immune rejection and further suppress adaptive immune responses, we expressed the immunomodulatory factors PD-L1, HLA-G, and the macrophage “don’t-eat me” signal CD47 from the AAVS1 safe harbor locus. Utilizing in vitro and in vivo immunoassays, we found that T cell responses were blunted. Moreover, NK cell killing and macrophage engulfment of our engineered cells were minimal. Our results describe an approach that effectively targets adaptive as well as innate immune responses and may therefore enable cell therapy on a broader scale.


2013 ◽  
Vol 10 (4) ◽  
pp. 160-163 ◽  
Author(s):  
Norio Nakatsuji ◽  
Eihachiro Kawase ◽  
Takamichi Miyazaki ◽  
Itsunari Minami ◽  
Kazuhiro Aiba

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qian Zhu ◽  
Qiqi Lu ◽  
Rong Gao ◽  
Tong Cao

Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.


2013 ◽  
Vol 13 (2) ◽  
pp. 120-132 ◽  
Author(s):  
Noushin Dianat ◽  
Clara Steichen ◽  
Ludovic Vallier ◽  
Anne Weber ◽  
Anne Dubart-Kupperschmitt

Sign in / Sign up

Export Citation Format

Share Document