scholarly journals Identification of p38 MAPK as a novel therapeutic target for Friedreich’s ataxia

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
M. Grazia Cotticelli ◽  
Shujuan Xia ◽  
Avinash Kaur ◽  
Daniel Lin ◽  
Yongping Wang ◽  
...  
2020 ◽  
Vol 295 (52) ◽  
pp. 17973-17985
Author(s):  
Gabriela Vilema-Enríquez ◽  
Robert Quinlan ◽  
Peter Kilfeather ◽  
Roberta Mazzone ◽  
Saba Saqlain ◽  
...  

The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN–GAA–Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4–7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.


2019 ◽  
Vol 369 (1) ◽  
pp. 47-54 ◽  
Author(s):  
M. Grazia Cotticelli ◽  
Shujuan Xia ◽  
Daniel Lin ◽  
Taehee Lee ◽  
Leila Terrab ◽  
...  

2020 ◽  
Author(s):  
G Vilema-Enríquez ◽  
R Quinlan ◽  
P Kilfeather ◽  
R Mazzone ◽  
S Saqlain ◽  
...  

AbstractThe molecular mechanisms of reduced frataxin (FXN) expression in Friedreich’s ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN-GAA-Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by approximately 1.5-fold in the reporter cell line and in several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4–7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogues were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression, and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.


Neurology ◽  
2000 ◽  
Vol 55 (11) ◽  
pp. 1600-1601 ◽  
Author(s):  
T. Sherer ◽  
J. T. Greenamyre

1986 ◽  
Vol 25 (2) ◽  
pp. 84-91 ◽  
Author(s):  
E. Cassandro ◽  
F. Mosca ◽  
L. Sequino ◽  
F. A. De Falco ◽  
G. Campanella

Sign in / Sign up

Export Citation Format

Share Document