scholarly journals Dynamic Expression Profile, Regulatory Mechanism and Correlation with Egg-laying Performance of ACSF Gene Family in Chicken (Gallus gallus)

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Weihua Tian ◽  
Hang Zheng ◽  
Liyu Yang ◽  
Hong Li ◽  
Yadong Tian ◽  
...  
2019 ◽  
Vol 20 (23) ◽  
pp. 5948 ◽  
Author(s):  
Wang ◽  
Yue ◽  
Liu ◽  
Yang ◽  
Li ◽  
...  

The fatty acid-binding protein (FABP) gene family, which encodes a group of fatty acid-trafficking molecules that affect cellular functions, has been studied extensively in mammals. However, little is known about the gene structure, expression profile, and regulatory mechanism of the gene family in chickens. In the present study, bioinformatics-based methods were used to identify the family members and investigate their evolutionary history and features of gene structure. Real-time PCR combined with in vivo and in vitro experiments were used to examine the spatiotemporal expression pattern, and explore the regulatory mechanism of FABP genes. The results show that nine members of the FABP gene family, which branched into two clusters and shared a conserved FATTYACIDBP domain, exist in the genome of chickens. Of these, seven FABP genes, including FABP1, FABP3-7, and FABP10 were abundantly expressed in the liver of hens. The expression levels of FABP1, FABP3, and FABP10 were significantly increased, FABP5 and FABP7 were significantly decreased, and FABP4 and FABP6 remained unchanged in hens at the peak laying stage in comparison to those at the pre-laying stage. Transcription of FABP1 and FABP3 were activated by estrogen via estrogen receptor (ER) α, whilst FABP10 was activated by estrogen via ERβ. Meanwhile, the expression of FABP1 was regulated by peroxisome proliferator activated receptor (PPAR) isoforms, of which tested PPARα and PPARβ agonists significantly inhibited the expression of FABP1, while tested PPARγ agonists significantly increased the expression of FABP1, but downregulated it when the concentration of the PPARγ agonist reached 100 nM. The expression of FABP3 was upregulated via tested PPARβ and PPARγ agonists, and the expression of FABP7 was selectively promoted via PPARγ. The expression of FABP10 was activated by all of the three tested PPAR agonists, but the expression of FABP4-6 was not affected by any of the PPAR agonists. In conclusion, members of the FABP gene family in chickens shared similar functional domains, gene structures, and evolutionary histories with mammalian species, but exhibited varying expression profiles and regulatory mechanisms. The results provide a valuable resource for better understanding the biological functions of individual FABP genes in chickens.


Gene ◽  
2021 ◽  
Vol 764 ◽  
pp. 145094
Author(s):  
Weihua Tian ◽  
Dandan Wang ◽  
Zhang Wang ◽  
Keren Jiang ◽  
Zhuanjian Li ◽  
...  

2020 ◽  
Vol 52 (5) ◽  
Author(s):  
De-Gong Wu ◽  
Qiu-Wen Zhan ◽  
Hai-Bing Yu ◽  
Bao-Hong Huang ◽  
Xin-Xin Cheng ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Henry Reyer ◽  
Michael Oster ◽  
Siriluck Ponsuksili ◽  
Nares Trakooljul ◽  
Adewunmi O. Omotoso ◽  
...  

Abstract Background Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis were assessed (n = 80). Results Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics. Conclusions The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements, which have so far been neglected in the supply recommendations. There is a demand for trial data showing the mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in laying hens.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2179
Author(s):  
Xue Cheng ◽  
Yuchen Liu ◽  
Zhong Wang ◽  
Lujiang Qu ◽  
Zhonghua Ning

Dropping moisture (DM) refers to the water content in feces. High DM negatively affects poultry production, environment, production costs, and animal health. Heredity, nutrition, environment, and disease may affect DM level. DM has medium inheritability and is related to cage height in henhouses. We examined the relationship among DM level, production performance, and environmental factors at different locations at the same henhouse height and effects of three types of additives. We measured the correlation between environmental factors including temperature, humidity, CO2 concentration, absolute pressure, and DM levels and laying performance of 934 Rhode Island Red hens. DM level was not significantly associated with environmental factors or production performance. We divided 64 persistently high DM hens into control and treatment groups supplied with different additives (probiotics, anisodamine, and antibiotics). DM levels, laying performance, egg quality, and serum biochemical indices were determined. Compared with the control and antibiotics, probiotics significantly reduced DM levels and eggshell strength while improving yolk color but did not significantly affect production performance. The additives reduced the b value of eggshell color; compared with probiotics, anisodamine decreased serum globulin levels. Exogenous active yeast supplementation can significantly reduce DM levels.


Sign in / Sign up

Export Citation Format

Share Document