ppar agonists
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 40)

H-INDEX

36
(FIVE YEARS 7)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Marialuigia Fantacuzzi ◽  
Rosa Amoroso ◽  
Alessandra Ammazzalorso

The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.


Author(s):  
Avik Chandra ◽  
Paranjeet Kaur ◽  
Sanjeev Kumar Sahu ◽  
Amit Mittal

2021 ◽  
Vol 36 (6) ◽  
pp. 1243-1253
Author(s):  
Yenna Lee ◽  
Bo-Rahm Kim ◽  
Geun-Hyung Kang ◽  
Gwan Jae Lee ◽  
Young Joo Park ◽  
...  

Background: Farnesoid X receptor (FXR), a bile acid–activated nuclear receptor, is a potent regulator of glucose and lipid metabolism as well as of bile acid metabolism. Previous studies have demonstrated that FXR deficiency is associated with metabolic derangements, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD), but its mechanism remains unclear. In this study, we investigated the role of FXR in atherosclerosis and NAFLD and the effect of peroxisome proliferator-activated receptor (PPAR) agonists in mouse models with FXR deficiency.Methods: En face lipid accumulation analysis, liver histology, serum levels of glucose and lipids, and mRNA expression of genes related to lipid metabolism were compared between apolipoprotein E (ApoE)−/− and ApoE−/−FXR−/− mice. The effects of PPARα and PPARγ agonists were also compared in both groups of mice.Results: Compared with ApoE−/− mice, ApoE−/−FXR−/− mice showed more severe atherosclerosis, hepatic steatosis, and higher levels of serum cholesterol, low-density lipoprotein cholesterol, and triglycerides, accompanied by increased mRNA expression of FAS, ApoC2, TNFα, IL-6 (liver), ATGL, TGH, HSL, and MGL (adipocytes), and decreased mRNA expressions of CPT2 (liver) and Tfam (skeletal muscle). Treatment with a PPARα agonist, but not with a PPARγ agonist, partly reversed atherosclerosis and hepatic steatosis, and decreased plasma triglyceride levels in the ApoE−/−FXR−/− mice, in association with increased mRNA expression of CD36 and FATP and decreased expression of ApoC2 and ApoC3 (liver).Conclusion: Loss of FXR is associated with aggravation of atherosclerosis and hepatic steatosis in ApoE-deficient mice, which could be reversed by a PPARα agonist through induction of fatty acid uptake, β-oxidation, and triglyceride hydrolysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Toobian ◽  
Pradipta Ghosh ◽  
Gajanan D. Katkar

Cells are richly equipped with nuclear receptors, which act as ligand-regulated transcription factors. Peroxisome proliferator activated receptors (PPARs), members of the nuclear receptor family, have been extensively studied for their roles in development, differentiation, and homeostatic processes. In the recent past, there has been substantial interest in understanding and defining the functions of PPARs and their agonists in regulating innate and adaptive immune responses as well as their pharmacologic potential in combating acute and chronic inflammatory disease. In this review, we focus on emerging evidence of the potential roles of the PPAR subtypes in macrophage biology. We also discuss the roles of dual and pan PPAR agonists as modulators of immune cell function, microbial infection, and inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1914
Author(s):  
Sanjay Sanjay ◽  
Anshul Sharma ◽  
Hae-Jeung Lee

Peroxisome proliferator-activated receptors (PPAR-γ, PPAR-α, and PPAR-β/δ) are ligand-dependent nuclear receptors that play a critical role in the regulation of hundreds of genes through their activation. Their expression and targeted activation play an important role in the treatment of a variety of diseases, including neurodegenerative, cardiovascular, diabetes, and cancer. In recent years, several reviews have been published describing the therapeutic potential of PPAR agonists (natural or synthetic) in the disorders listed above; however, no comprehensive report defining the role of naturally derived phytoconstituents as PPAR agonists targeting neurodegenerative diseases has been published. This review will focus on the role of phytoconstituents as PPAR agonists and the relevant preclinical studies and mechanistic insights into their neuroprotective effects. Exemplary research includes flavonoids, fatty acids, cannabinoids, curcumin, genistein, capsaicin, and piperine, all of which have been shown to be PPAR agonists either directly or indirectly. Additionally, a few studies have demonstrated the use of clinical samples in in vitro investigations. The role of the fruit fly Drosophila melanogaster as a potential model for studying neurodegenerative diseases has also been highlighted.


2021 ◽  
Author(s):  
Lili Tao ◽  
Phillip Dryden ◽  
Alexandria Lowe ◽  
Guoxun Wang ◽  
Igor Dozmorov ◽  
...  

Peroxisome proliferator activated receptor (PPAR) agonists are commonly used to treat metabolic disorders in humans because they regulate fatty acid oxidation and cholesterol metabolism. In addition to their roles in controlling metabolism, PPAR agonists also regulate inflammation and are immunosuppressive in models of autoimmunity. We aimed to test whether activation of PPARα with clinically relevant ligands could impact herpesvirus infection using the model strain murine gammaherpesvirus-68. We found that PPARα agonists WY14643 and fenofibrate increased herpesvirus replication in vitro. In vivo, WY14643 increased viral replication and caused lethality in mice. Unexpectedly, these effects proved independent of PPARα. Investigating the mechanism of action for WY14643, we found that it suppresses production of type I interferon by inhibiting stimulator of interferon (STING), which lies downstream of the cytoplasmic DNA sensor cGAS. Thus, WY14643 regulates interferon downstream of cytoplasmic DNA recognition and increases herpesvirus replication in a PPARα-independent manner.  Taken together, our data indicate that caution should be employed when using PPARα agonists in immuno-metabolic studies, as they can have off-target effects on viral replication.


2021 ◽  
Vol 14 (10) ◽  
pp. 1025
Author(s):  
Claudia Sagheddu ◽  
Miriam Melis ◽  
Anna Lisa Muntoni ◽  
Marco Pistis

Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood–brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.


PD (PD) is a debilitating progressive age-related neurodegenerative disorder that negatively impacts bodily movement. It is the second most common type of neurodegenerative disease after Alzheimer's disease. Although the etiology and pathogenesis of PD remain unknown, a vast body of evidence indicates that oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and proteasomal dysfunction all play a role in the disease's pathogenesis. Because of the multifactorial nature of the disease, current drug treatment can only offer symptomatic relief and cannot stop or delay the disease progression. The Peroxisome proliferator-activated receptors (PPARs) are the member of the receptor’s superfamily called, nuclear receptors, regulates the growth, differentiation of the tissues, inflammation, mitochondrial function, wound healing, lipid metabolism, and glucose metabolism. Several PPAR agonists have recently been shown to protect neurons from oxidative damage, inflammation, and apoptosis in Alzheimer's disease, PD, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We review the research on the neuroprotective effects of PPAR agonists in in-vitro and in-vivo models of PD in this paper. Similarly, the pharmacological mechanism of PPAR agonists' neuroprotective effects is examined. Finally, PPAR agonists exert neuroprotective effects by controlling the expression of a set of genes involved in cell survival processes, suggesting that they may be a potential therapeutic target in crippling neurodegenerative diseases like PD. Keywords: Parkinson’s disease, neuroprotective, neuro inflammatory, oxidative stress, PPAR agonist


2021 ◽  
Vol 22 (18) ◽  
pp. 10161
Author(s):  
Tapan Behl ◽  
Piyush Madaan ◽  
Aayush Sehgal ◽  
Sukhbir Singh ◽  
Neelam Sharma ◽  
...  

One of the utmost frequently emerging neurodegenerative diseases, Parkinson’s disease (PD) must be comprehended through the forfeit of dopamine (DA)-generating nerve cells in the substantia nigra pars compacta (SN-PC). The etiology and pathogenesis underlying the emergence of PD is still obscure. However, expanding corroboration encourages the involvement of genetic and environmental factors in the etiology of PD. The destruction of numerous cellular components, namely oxidative stress, ubiquitin-proteasome system (UPS) dysfunction, autophagy-lysosome system dysfunction, neuroinflammation and programmed cell death, and mitochondrial dysfunction partake in the pathogenesis of PD. Present-day pharmacotherapy can alleviate the manifestations, but no therapy has been demonstrated to cease disease progression. Peroxisome proliferator-activated receptors (PPARs) are ligand-directed transcription factors pertaining to the class of nuclear hormone receptors (NHR), and are implicated in the modulation of mitochondrial operation, inflammation, wound healing, redox equilibrium, and metabolism of blood sugar and lipids. Numerous PPAR agonists have been recognized to safeguard nerve cells from oxidative destruction, inflammation, and programmed cell death in PD and other neurodegenerative diseases. Additionally, various investigations suggest that regular administration of PPAR-activating non-steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, indomethacin), and leukotriene receptor antagonists (montelukast) were related to the de-escalated evolution of neurodegenerative diseases. The present review elucidates the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing PD. Existing articles up to the present were procured through PubMed, MEDLINE, etc., utilizing specific keywords spotlighted in this review. Furthermore, the authors aim to provide insight into the neuroprotective actions of PPAR agonists by outlining the pharmacological mechanism. As a conclusion, PPAR agonists exhibit neuroprotection through modulating the expression of a group of genes implicated in cellular survival pathways, and may be a propitious target in the therapy of incapacitating neurodegenerative diseases like PD.


2021 ◽  
Vol 22 (17) ◽  
pp. 9223
Author(s):  
Hiroyuki Miyachi

Progress in understanding peroxisome proliferator-activated receptor (PPAR) subtypes as nuclear receptors that have pleiotropic effects on biological responses has enabled the exploration of new subtype-selective PPAR ligands. Such ligands are useful chemical biology/pharmacological tools to investigate the functions of PPARs and are also candidate drugs for the treatment of PPAR-mediated diseases, such as metabolic syndrome, inflammation and cancer. This review summarizes our medicinal chemistry research of more than 20 years on the design, synthesis, and pharmacological evaluation of subtype-selective PPAR agonists, which has been based on two working hypotheses, the ligand superfamily concept and the helix 12 (H12) holding induction concept. X-ray crystallographic analyses of our agonists complexed with each PPAR subtype validate our working hypotheses.


Sign in / Sign up

Export Citation Format

Share Document