scholarly journals A novel, non-invasive model for diagnosing liver fibrosis stage in patients with hepatocellular carcinoma

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Gao-Xiong Ouyang ◽  
Yu-mei Zhang ◽  
Shao-Liang Zhu ◽  
Peng Wang ◽  
Yuan Ren ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2778
Author(s):  
Monica Lupsor-Platon ◽  
Teodora Serban ◽  
Alexandra-Iulia Silion ◽  
Alexandru Tirpe ◽  
Mira Florea

The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population prompts for a quick response from physicians. As NAFLD can progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC), new non-invasive, rapid, cost-effective diagnostic methods are needed. In this review, we explore the diagnostic performance of ultrasound elastography for non-invasive assessment of NAFLD and NAFLD-related HCC. Elastography provides a new dimension to the conventional ultrasound examination, by adding the liver stiffness quantification in the diagnostic algorithm. Whilst the most efficient elastographic techniques in staging liver fibrosis in NAFLD are vibration controlled transient elastography (VCTE) and 2D-Shear wave elastography (2D-SWE), VCTE presents the upside of assessing steatosis through the controlled attenuation parameter (CAP). Hereby, we have also critically reviewed the most important elastographic techniques for the quantitative characterization of focal liver lesions (FLLs), focusing on HCC: Point shear wave elastography (pSWE) and 2D-SWE. As our paper shows, elastography should not be considered as a substitute for FLL biopsy because of the stiffness values overlap. Furthermore, by using non-invasive, disease-specific surveillance tools, such as US elastography, a subset of the non-cirrhotic NAFLD patients at risk for developing HCC can be detected early, leading to a better outcome. A recent ultrasomics study exemplified the wide potential of 2D-SWE to differentiate benign FLLs from malignant ones, guiding the clinician towards the next steps of diagnosis and contributing to better long-term disease surveillance.


2021 ◽  
Vol 22 (14) ◽  
pp. 7411
Author(s):  
Jingjing Jiao ◽  
Jessica I. Sanchez ◽  
Erika J. Thompson ◽  
Xizeng Mao ◽  
Joseph B. McCormick ◽  
...  

Hispanics are disproportionally affected by liver fibrosis and hepatocellular carcinoma (HCC). Advanced liver fibrosis is a major risk factor for HCC development. We aimed at identifying somatic mutations in plasma cell-free DNA (cfDNA) of Hispanics with HCC and Hispanics with advanced liver fibrosis but no HCC. Targeted sequencing of over 262 cancer-associated genes identified nonsynonymous mutations in 22 of the 27 HCC patients. Mutations were detected in known HCC-associated genes (e.g., CTNNB1, TP53, NFE2L2, and ARID1A). No difference in cfDNA concentrations was observed between patients with mutations and those without detectable mutations. HCC patients with higher cfDNA concentrations or higher number of mutations had a shorter overall survival (p < 0.001 and p = 0.045). Nonsynonymous mutations were also identified in 17 of the 51 subjects with advanced liver fibrosis. KMT2C was the most commonly mutated gene. Nine genes were mutated in both subjects with advanced fibrosis and HCC patients. Again, no significant difference in cfDNA concentrations was observed between subjects with mutations and those without detectable mutations. Furthermore, higher cfDNA concentrations and higher number of mutations correlated with a death outcome in subjects with advanced fibrosis. In conclusion, cfDNA features are promising non-invasive markers for HCC risk prediction and overall survival.


2020 ◽  
Vol 21 (3) ◽  
pp. 949 ◽  
Author(s):  
Ian Baudi ◽  
Takako Inoue ◽  
Yasuhito Tanaka

The hepatitis B virus (HBV) cannot be removed completely from infected hepatocytes, owing to the presence of intrahepatic covalently closed circular DNA (cccDNA). As chronic hepatitis B (CHB) can progress to cirrhosis and hepatocellular carcinoma (HCC), predicting HCC development in high-risk patients with high viral replicative activity or advanced fibrosis is important. Novel serological biomarkers reflect intrahepatic viral replicative activity or the progression of liver fibrosis, indicating non-invasive alternatives to liver biopsy: (1) Hepatitis B core-related antigen (HBcrAg) correlates with serum HBV DNA and intrahepatic cccDNA. In CHB patients, a decrease in HBcrAg is associated with favorable outcomes. HBcrAg can predict HCC occurrence or recurrence. (2) Measurement of the Mac-2 binding protein glycosylation isomer (M2BPGi) has been introduced for the evaluation of liver fibrosis. An increase in M2BPGi in CHB patients is related to the progression of liver fibrosis and high potential (risk) of HCC development. Here, we describe the clinical applications of HBcrAg and M2BPGi in CHB patients. Additionally, because new potential therapeutic agents that eliminate intrahepatic cccDNA are being developed, monitoring of HBcrAg or M2BPGi might be suitable for evaluating therapeutic effects and the clinical outcomes. In conclusion, these would be appropriate surrogate markers for predicting disease progression.


Sign in / Sign up

Export Citation Format

Share Document