scholarly journals Steroid Receptor Coactivator-2 Controls the Pentose Phosphate Pathway through RPIA in Human Endometrial Cancer Cells

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Maria M. Szwarc ◽  
Ramakrishna Kommagani ◽  
Vasanta Putluri ◽  
Julien Dubrulle ◽  
Fabio Stossi ◽  
...  
2018 ◽  
Author(s):  
Benedikt Warth ◽  
Amelia Palermo ◽  
Nicholas J.W. Rattray ◽  
Nathan V Lee ◽  
Zhou Zhu ◽  
...  

SummaryPalbociclib, is a selective inhibitor of cyclin-dependent kinases 4 and 6 and used as a first-line treatment for patients with estrogen receptor positive breast cancer. It has been shown that patients have improved progression-free survival when treated in combination with fulvestrant, an estrogen receptor antagonist. However, the mechanisms for this survival advantage are not known. We sought to analyze metabolic and transcriptomic changes in MCF-7 adenocarcinoma breast cancer cells following single and combined treatments to determine if selective metabolic pathways are targeted during combination therapy. Our results showed that individually, the drugs caused metabolic disruption to the same metabolic pathways, however fulvestrant additionally attenuated the pentose phosphate pathway and the production of important coenzymes. A comprehensive effect was observed when the drugs were applied together, confirming the combinatory therapy′s synergism in the cell model. This study highlights the power of merging high-dimensional datasets to unravel mechanisms involved in cancer metabolism and therapy.Highlights○First study employing multi-omics to investigate combined therapy on breast cancer cells○Fulvestrant attenuates the pentose phosphate pathway and coenzyme production○Synergism of palbociclib and fulvestrant was confirmed in vitro○Altered key pathways have been identifiedeTOC BlurbJohnson et al. applied an innovative multi-omics approach to decipher metabolic pathways affected by single versus combination dosing of palbociclib and fulvestrant in estrogen receptor positive breast cancer. Key metabolites and genes were correlated within metabolic pathways and shown to be involved in the drugs′ synergism.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1888
Author(s):  
Thi Yen Ly Huynh ◽  
Ilona Oscilowska ◽  
Jorge Sáiz ◽  
Magdalena Nizioł ◽  
Weronika Baszanowska ◽  
...  

It has been considered that proline dehydrogenase/proline oxidase (PRODH/POX) is involved in antineoplastic activity of metformin (MET). The aim of this study is identification of key metabolites of glycolysis, pentose phosphate pathway (PPP), tricarboxylic acids (TCA), urea cycles (UC) and some amino acids in MET-treated MCF-7 cells and PRODH/POX-knocked out MCF-7 (MCF-7crPOX) cells. MCF-7crPOX cells were generated by using CRISPR-Cas9. Targeted metabolomics was performed by LC-MS/MS/QqQ. Expression of pro-apoptotic proteins was evaluated by Western blot. In the absence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to similar inhibition of glycolysis (drastic increase in intracellular glucose and pyruvate) and increase in the utilization of phospho-enol-pyruvic acid, glucose-6-phosphate and some metabolites of TCA and UC, contributing to apoptosis. However, in the presence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to utilization of some studied metabolites (except glucose), facilitating pro-survival phenotype of MCF-7 cells in these conditions. It suggests that MET treatment or PRODH/POX-knock out induce similar metabolic effects (glucose starvation) and glycolysis is tightly linked to glutamine metabolism in MCF-7 breast cancer cells. The data provide insight into mechanism of anticancer activity of MET as an approach to further studies on experimental breast cancer therapy.


2019 ◽  
Author(s):  
Shih-Ping Cheng ◽  
Chien-Liang Liu ◽  
Jie-Jen Lee ◽  
Yi-Chiung Hsu ◽  
Shih-Yuan Huang

2008 ◽  
Vol 28 (21) ◽  
pp. 6580-6593 ◽  
Author(s):  
Annabell S. Oh ◽  
John T. Lahusen ◽  
Christopher D. Chien ◽  
Mark P. Fereshteh ◽  
Xiaolong Zhang ◽  
...  

ABSTRACT Overexpression and activation of the steroid receptor coactivator amplified in breast cancer 1 (AIB1)/steroid receptor coactivator-3 (SRC-3) have been shown to have a critical role in oncogenesis and are required for both steroid and growth factor signaling in epithelial tumors. Here, we report a new mechanism for activation of SRC coactivators. We demonstrate regulated tyrosine phosphorylation of AIB1/SRC-3 at a C-terminal tyrosine residue (Y1357) that is phosphorylated after insulin-like growth factor 1, epidermal growth factor, or estrogen treatment of breast cancer cells. Phosphorylated Y1357 is increased in HER2/neu (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2) mammary tumor epithelia and is required to modulate AIB1/SRC-3 coactivation of estrogen receptor alpha (ERα), progesterone receptor B, NF-κB, and AP-1-dependent promoters. c-Abl (v-Abl Abelson murine leukemia viral oncogene homolog 1) tyrosine kinase directly phosphorylates AIB1/SRC-3 at Y1357 and modulates the association of AIB1 with c-Abl, ERα, the transcriptional cofactor p300, and the methyltransferase coactivator-associated arginine methyltransferase 1, CARM1. AIB1/SRC-3-dependent transcription and phenotypic changes, such as cell growth and focus formation, can be reversed by an Abl kinase inhibitor, imatinib. Thus, the phosphorylation state of Y1357 can function as a molecular on/off switch and facilitates the cross talk between hormone, growth factor, and intracellular kinase signaling pathways in cancer.


2019 ◽  
Vol 10 (2) ◽  
pp. 547-555 ◽  
Author(s):  
Yuan Hu ◽  
An-Yue Wu ◽  
Cong Xu ◽  
Ke-Qi Song ◽  
Wen-Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document