scholarly journals Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vaskar Gnyawali ◽  
Eric M. Strohm ◽  
Jun-Zhi Wang ◽  
Scott S. H. Tsai ◽  
Michael C. Kolios
2021 ◽  
Vol 25 (4) ◽  
Author(s):  
Hongyu Yang ◽  
Yuanchen Wei ◽  
Beiyuan Fan ◽  
Lixing Liu ◽  
Ting Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weichao Zhai ◽  
Jerome Tan ◽  
Tobias Russell ◽  
Sixun Chen ◽  
Dennis McGonagle ◽  
...  

AbstractHuman mesenchymal stromal cells (hMSCs) have demonstrated, in various preclinical settings, consistent ability in promoting tissue healing and improving outcomes in animal disease models. However, translation from the preclinical model into clinical practice has proven to be considerably more difficult. One key challenge being the inability to perform in situ assessment of the hMSCs in continuous culture, where the accumulation of the senescent cells impairs the culture’s viability, differentiation potential and ultimately leads to reduced therapeutic efficacies. Histochemical $$\upbeta $$ β -galactosidase staining is the current standard for measuring hMSC senescence, but this method is destructive and not label-free. In this study, we have investigated alternatives in quantification of hMSCs senescence, which included flow cytometry methods that are based on a combination of cell size measurements and fluorescence detection of SA-$$\upbeta $$ β -galactosidase activity using the fluorogenic substrate, C$${_{12}}$$ 12 FDG; and autofluorescence methods that measure fluorescence output from endogenous fluorophores including lipopigments. For identification of senescent cells in the hMSC batches produced, the non-destructive and label-free methods could be a better way forward as they involve minimum manipulations of the cells of interest, increasing the final output of the therapeutic-grade hMSC cultures. In this work, we have grown hMSC cultures over a period of 7 months and compared early and senescent hMSC passages using the advanced flow cytometry and autofluorescence methods, which were benchmarked with the current standard in $$\upbeta $$ β -galactosidase staining. Both the advanced methods demonstrated statistically significant values, (r = 0.76, p $$\le $$ ≤ 0.001 for the fluorogenic C$${_{12}}$$ 12 FDG method, and r = 0.72, p $$\le $$ ≤ 0.05 for the forward scatter method), and good fold difference ranges (1.120–4.436 for total autofluorescence mean and 1.082–6.362 for lipopigment autofluorescence mean) between early and senescent passage hMSCs. Our autofluroescence imaging and spectra decomposition platform offers additional benefit in label-free characterisation of senescent hMSC cells and could be further developed for adoption for future in situ cellular senescence evaluation by the cell manufacturers.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
David Dannhauser ◽  
Domenico Rossi ◽  
Anna T Palatucci ◽  
Valentina Rubino ◽  
Flavia Carriero ◽  
...  

Natural Killer (NK) are indicated as favorite candidates for innovative therapeutic treatment and are divided in two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim. Therefore, the ability...


2021 ◽  
Author(s):  
Zoltán Göröcs ◽  
David Baum ◽  
Fang Song ◽  
Kevin de Haan ◽  
Hatice Ceylan Koydemir ◽  
...  

2019 ◽  
Vol 116 (32) ◽  
pp. 15842-15848 ◽  
Author(s):  
Yuta Suzuki ◽  
Koya Kobayashi ◽  
Yoshifumi Wakisaka ◽  
Dinghuan Deng ◽  
Shunji Tanaka ◽  
...  

Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Melanie Ostermann ◽  
Alexander Sauter ◽  
Ying Xue ◽  
Eivind Birkeland ◽  
Julia Schoelermann ◽  
...  

AbstractThe development of reliable and cost-efficient methods to assess the toxicity of nanomaterials (NMs) is critical for the proper identification of their impact on human health and for ensuring a safe progress of nanotechnology. In this study, we investigated the reliability and applicability of label-free impedance flow cytometry (IFC) for in vitro nanotoxicity screening, which avoids time-consuming labelling steps and minimizes possible NM-induced interferences. U937 human lymphoma cells were exposed for 24 h to eight different nanomaterials at five concentrations (2, 10, 20, 50, and 100 μg/mL). The NMs’ effect on viability was measured using IFC and the results were compared to those obtained by trypan blue (TB) dye exclusion and conventional flow cytometry (FC). To discriminate viable from necrotic cells, the IFC measurement settings regarding signal trigger level and frequency, as well as the buffer composition, were optimised. A clear discrimination between viable and necrotic cells was obtained at 6 MHz in a sucrose-based measurement buffer. Nanomaterial-induced interferences were not detected for IFC. The IFC and TB assay results were in accordance for all NMs. The IFC was found to be robust, reliable and less prone to interferences due to the advantage of being label-free.


2005 ◽  
Vol 65A (2) ◽  
pp. 124-132 ◽  
Author(s):  
Karen Cheung ◽  
Shady Gawad ◽  
Philippe Renaud

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S132-S133
Author(s):  
H. Ochiai ◽  
K. Teranishi ◽  
K. Toda ◽  
K. Sugimoto ◽  
S. Ota

2018 ◽  
Vol 96 ◽  
pp. 147-156 ◽  
Author(s):  
Yuqian Li ◽  
Bruno Cornelis ◽  
Alexandra Dusa ◽  
Geert Vanmeerbeeck ◽  
Dries Vercruysse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document