scholarly journals Characterization of Microbial Communities, Identification of Cr(VI) Reducing Bacteria in Constructed Wetland and Cr(VI) Removal Ability of Bacillus cereus

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hua Lin ◽  
Shaohong You ◽  
Liheng Liu
2020 ◽  
Vol 12 (16) ◽  
pp. 6477 ◽  
Author(s):  
Purnima Singh ◽  
Masaharu Tsuji ◽  
Shiv Mohan Singh ◽  
Nozomu Takeuchi

To understand the microbial composition and diversity patterns, cryoconite granules were collected from two geographical areas, i.e., Nepali Himalaya and Greenland, Arctic. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of the four glaciers. The total 13 species of bacteria such as Bacillus aryabhattai, Bacillus simplex, Brevundimonas vesicularis, Cryobacterium luteum, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Glaciihabitans tibetensis, Leifsonia kafniensis, Paracoccus limosus, Polaromonas glacialis, Sporosarcina globispora, Staphylococcus saprophyticus, Variovorax ginsengisoli, and 4 species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Dothideomycetes sp., Helotiales sp. were recorded from Nepali Himalaya. Among these, 12 species of bacteria and 4 species of fungi are new contributions to Himalaya. In contrast to this, six species of bacteria such as Bacillus cereus, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Enhydrobacter aerosaccus, Glaciihabitans tibetensis, Subtercola frigoramans, and nine species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Naganishia vaughanmartiniae, Piskurozyma fildesensis, Rhodotorula svalbardensis, Alatospora acuminata, Articulospora sp., Phialophora sp., Thelebolus microspores, and Dothideomycetes sp.), were recorded from Qaanaaq, Isunnguata Sermia and Thule glaciers, Greenland. Among these, five species of bacteria and seven species of fungi are new contributions to Greenland cryoconite. Microbial analyses indicate that the Nepali Himalayan cryoconite colonize higher numbers of microbial species compared to the Greenland cryoconite.


2016 ◽  
Vol 2 (5) ◽  
pp. 563-566.e5 ◽  
Author(s):  
Chandra Sekhar Pedamallu ◽  
Ami S. Bhatt ◽  
Susan Bullman ◽  
Sharyle Fowler ◽  
Samuel S. Freeman ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 405
Author(s):  
Anna Matysiak ◽  
Michal Kabza ◽  
Justyna A. Karolak ◽  
Marcelina M. Jaworska ◽  
Malgorzata Rydzanicz ◽  
...  

The ocular microbiome composition has only been partially characterized. Here, we used RNA-sequencing (RNA-Seq) data to assess microbial diversity in human corneal tissue. Additionally, conjunctival swab samples were examined to characterize ocular surface microbiota. Short RNA-Seq reads, obtained from a previous transcriptome study of 50 corneal tissues, were mapped to the human reference genome GRCh38 to remove sequences of human origin. The unmapped reads were then used for taxonomic classification by comparing them with known bacterial, archaeal, and viral sequences from public databases. The components of microbial communities were identified and characterized using both conventional microbiology and polymerase chain reaction (PCR) techniques in 36 conjunctival swabs. The majority of ocular samples examined by conventional and molecular techniques showed very similar microbial taxonomic profiles, with most of the microorganisms being classified into Proteobacteria, Firmicutes, and Actinobacteria phyla. Only 50% of conjunctival samples exhibited bacterial growth. The PCR detection provided a broader overview of positive results for conjunctival materials. The RNA-Seq assessment revealed significant variability of the corneal microbial communities, including fastidious bacteria and viruses. The use of the combined techniques allowed for a comprehensive characterization of the eye microbiome’s elements, especially in aspects of microbiota diversity.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


Pedosphere ◽  
2012 ◽  
Vol 22 (5) ◽  
pp. 673-680 ◽  
Author(s):  
Hui-Juan LI ◽  
Jing-Jing PENG ◽  
Hong-Bo LI

Geobiology ◽  
2007 ◽  
Vol 5 (4) ◽  
pp. 423-433 ◽  
Author(s):  
S. SHIMIZU ◽  
M. AKIYAMA ◽  
T. NAGANUMA ◽  
M. FUJIOKA ◽  
M. NAKO ◽  
...  

2011 ◽  
Vol 28 (2) ◽  
pp. 275-283 ◽  
Author(s):  
C.C.J. van Melis ◽  
M.N. Nierop Groot ◽  
M.H. Tempelaars ◽  
R. Moezelaar ◽  
T. Abee

Sign in / Sign up

Export Citation Format

Share Document