scholarly journals Exploring the link between microseism and sea ice in Antarctica by using machine learning

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Cannata ◽  
Flavio Cannavò ◽  
Salvatore Moschella ◽  
Stefano Gresta ◽  
Laura Spina

Abstract The most continuous and ubiquitous seismic signal on Earth is the microseism, closely related to ocean wave energy coupling with the solid Earth. A peculiar feature of microseism recorded in Antarctica is the link with the sea ice, making the temporal pattern of microseism amplitudes different with respect to the microseism recorded in low-middle latitude regions. Indeed, during austral winters, in Antarctica the oceanic waves cannot efficiently excite seismic energy because of the sea ice in the Southern Ocean. Here, we quantitatively investigate the relationship between microseism, recorded along the Antarctic coasts, and sea ice concentration. In particular, we show a decrease in sea ice sensitivity of microseism, due to the increasing distance from the station recording the seismic signal. The influence seems to strongly reduce for distances above 1,000 km. Finally, we present an algorithm, based on machine learning techniques, allowing to spatially and temporally reconstruct the sea ice distribution around Antarctica based on the microseism amplitudes. This technique will allow reconstructing the sea ice concentration in both Arctic and Antarctica in periods when the satellite images, routinely used for sea ice monitoring, are not available, with wide applications in many fields, first of all climate studies.

2017 ◽  
Vol 12 (4) ◽  
pp. 349-365
Author(s):  
Ji-Won Kim ◽  
◽  
Kwang-Jin Kim ◽  
Soo-Jin Lee ◽  
Yeong-Ho Kim ◽  
...  

2020 ◽  
Author(s):  
Sanggyun Lee ◽  
Julienne Stroeve ◽  
Michel Tsamados

<p> Melt ponds are a dominant feature on the Arctic sea ice surface in summer, occupying up to about 50 – 60% of the sea ice surface during advanced melt. Melt ponds normally begin to form around mid-May in the marginal ice zone and expand northwards as the summer melt season progresses. Once melt ponds emerge, the scattering characteristics of the ice surface changes, dramatically lowering the sea ice albedo. Since 96% of the total annual solar heat into the ocean through sea ice occurs between May and August, the presence of melt ponds plays a significant role in this transfer of solar heat, influencing not only the sea ice energy balance, but also the amount of light available under the sea ice and ocean primary productivity. Given the importance melt ponds play in the coupled Arctic climate-ecosystem, mapping and quantification of melt pond variability on a Pan-Arctic basin scale are needed. Satellite-based observations are the only way to map melt ponds and albedo changes on a pan-Arctic scale. Rösel et al. (2012) utilized a MODIS 8-day average product to map melt ponds on a pan-Arctic scale and over several years. In another approach, melt pond fraction and surface albedo were retrieved based on the physical and optical characteristics of sea ice and melt ponds without a priori information using MERIS.Here, we propose a novel machine learning-based methodology to map Arctic melt ponds from MODIS 500m resolution data. We provide a merging procedure to create the first pan-Arctic melt pond product spanning a 20-year period at a weekly temporal resolution. Specifically, we use MODIS data together with machine learning, including multi-layer neural network and logistic regression to test our ability to map melt ponds from the start to the end of the melt season. Since sea ice reflectance is strongly dependent on the viewing and solar geometry (i.e. sensor and solar zenith and azimuth angles), we attempt to minimize this dependence by using normalized band ratios in the machine learning algorithms. Each melt pond retrieval algorithm is different and validation ways are different as well producing somewhat dissimilar melt pond results. In this study, we inter-compare melt ponds products from different institutes, including university of Hamburg, university of Bremen, and university college London. The melt pond maps are compared with melt onset and freeze-up dates data and sea ice concentration. The melt pond maps are evaluated by melt pond fraction statistics from high resolution satellite (MEDEA) images that have not been used for the evaluation in melt pond products. </p>


2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


Sign in / Sign up

Export Citation Format

Share Document