scholarly journals On the spatiotemporal behavior of sea ice concentration anomalies in the Northern Hemisphere

2007 ◽  
Vol 112 (D13) ◽  
Author(s):  
J. V. Lukovich ◽  
D. G. Barber
Author(s):  
T. Alekseeva ◽  
◽  
E. Sharkov ◽  
V. Tikhonov ◽  
S. Frolov ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


1989 ◽  
Vol 94 (C8) ◽  
pp. 10955 ◽  
Author(s):  
Mark C. Serreze ◽  
Roger G. Barry ◽  
Alfred S. McLaren

2016 ◽  
Vol 8 (5) ◽  
pp. 397 ◽  
Author(s):  
Yufang Ye ◽  
Mohammed Shokr ◽  
Georg Heygster ◽  
Gunnar Spreen

2021 ◽  
Vol 13 (15) ◽  
pp. 2982
Author(s):  
Richard Dworak ◽  
Yinghui Liu ◽  
Jeffrey Key ◽  
Walter N. Meier

An effective blended Sea-Ice Concentration (SIC) product has been developed that utilizes ice concentrations from passive microwave and visible/infrared satellite instruments, specifically the Advanced Microwave Scanning Radiometer-2 (AMSR2) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The blending takes advantage of the all-sky capability of the AMSR2 sensor and the high spatial resolution of VIIRS, though it utilizes only the clear sky characteristics of VIIRS. After both VIIRS and AMSR2 images are remapped to a 1 km EASE-Grid version 2, a Best Linear Unbiased Estimator (BLUE) method is used to combine the AMSR2 and VIIRS SIC for a blended product at 1 km resolution under clear-sky conditions. Under cloudy-sky conditions the AMSR2 SIC with bias correction is used. For validation, high spatial resolution Landsat data are collocated with VIIRS and AMSR2 from 1 February 2017 to 31 October 2019. Bias, standard deviation, and root mean squared errors are calculated for the SICs of VIIRS, AMSR2, and the blended field. The blended SIC outperforms the individual VIIRS and AMSR2 SICs. The higher spatial resolution VIIRS data provide beneficial information to improve upon AMSR2 SIC under clear-sky conditions, especially during the summer melt season, as the AMSR2 SIC has a consistent negative bias near and above the melting point.


Sign in / Sign up

Export Citation Format

Share Document