scholarly journals 8-OxoG in GC-rich Sp1 binding sites enhances gene transcription in adipose tissue of juvenile mice

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jong Woo Park ◽  
Young In Han ◽  
Sung Woo Kim ◽  
Tae Min Kim ◽  
Su Cheong Yeom ◽  
...  

Abstract The oxidation of guanine to 8-oxoguanine (8-oxoG) is the most common type of oxidative DNA lesion. There is a growing body of evidence indicating that 8-oxoG is not only pre-mutagenic, but also plays an essential role in modulating gene expression along with its cognate repair proteins. In this study, we investigated the relationship between 8-oxoG formed under intrinsic oxidative stress conditions and gene expression in adipose and lung tissues of juvenile mice. We observed that transcriptional activity and the number of active genes were significantly correlated with the distribution of 8-oxoG in gene promoter regions, as determined by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), and 8-oxoG and RNA sequencing. Gene regulation by 8-oxoG was not associated with the degree of 8-oxoG formation. Instead, genes with GC-rich transcription factor binding sites in their promoters became more active with increasing 8-oxoG abundance as also demonstrated by specificity protein 1 (Sp1)- and estrogen response element (ERE)-luciferase assays in human embryonic kidney (HEK293T) cells. These results indicate that the occurrence of 8-oxoG in GC-rich Sp1 binding sites is important for gene regulation during adipose tissue development.

2019 ◽  
Author(s):  
Jong Woo Park ◽  
Young In Han ◽  
Tae Min Kim ◽  
Su Cheong Yeom ◽  
Jaeku Kang ◽  
...  

ABSTRACTThe oxidation of guanine to 8-oxoguanine (8-oxoG) is the most common type of oxidative DNA lesion. There is a growing body of evidence indicating that 8-oxoG is not only pre-mutagenic, but also plays an essential role in modulating gene expression along with its cognate repair proteins. In this study, we investigated the relationship between 8-oxoG formed under intrinsic oxidative stress conditions and gene expression in adipose and lung tissues of juvenile mice. We observed that transcriptional activity and the number of active genes were significantly correlated with the distribution of 8-oxoG in gene promoter regions, as determined by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), and 8-oxoG and RNA sequencing. Gene regulation by 8-oxoG was not associated with the degree of 8-oxoG formation. Instead, genes with GC-rich transcription factor binding sites in their promoters became more active with increasing 8-oxoG abundance as also demonstrated by specificity protein 1 (Sp1)- and estrogen response element (ERE)-luciferase assays in human embryonic kidney (HEK293T) cells. These results indicate that the occurrence of 8-oxoG in GC-rich Sp1 binding sites is important for gene regulation during adipose tissue development.


2015 ◽  
Vol 14s1 ◽  
pp. CIN.S13972 ◽  
Author(s):  
Qian Wu ◽  
Kyoung-Jae Won ◽  
Hongzhe Li

Chromatin immunoprecipitation sequencing (ChIP-seq) is a powerful method for analyzing protein interactions with DNA. It can be applied to identify the binding sites of transcription factors (TFs) and genomic landscape of histone modification marks (HMs). Previous research has largely focused on developing peak-calling procedures to detect the binding sites for TFs. However, these procedures may fail when applied to ChIP-seq data of HMs, which have diffuse signals and multiple local peaks. In addition, it is important to identify genes with differential histone enrichment regions between two experimental conditions, such as different cellular states or different time points. Parametric methods based on Poisson/negative binomial distribution have been proposed to address this differential enrichment problem and most of these methods require biological replications. However, many ChIP-seq data usually have a few or even no replicates. We propose a nonparametric method to identify the genes with differential histone enrichment regions even without replicates. Our method is based on nonparametric hypothesis testing and kernel smoothing in order to capture the spatial differences in histone-enriched profiles. We demonstrate the method using ChIP-seq data on a comparative epigenomic profiling of adipogenesis of murine adipose stromal cells and the Encyclopedia of DNA Elements (ENCODE) ChIP-seq data. Our method identifies many genes with differential H3K27ac histone enrichment profiles at gene promoter regions between proliferating preadipocytes and mature adipocytes in murine 3T3-L1 cells. The test statistics also correlate with the gene expression changes well and are predictive to gene expression changes, indicating that the identified differentially enriched regions are indeed biologically meaningful.


2016 ◽  
Author(s):  
Xueying C. Li ◽  
Justin C. Fay

AbstractGene regulation is a ubiquitous mechanism by which organisms respond to their environment. While organisms are often found to be adapted to the environments they experience, the role of gene regulation in environmental adaptation is not often known. In this study, we examine divergence in cis-regulatory effects between two Saccharomyces species, S. cerevisiae and S. uvarum, that have substantially diverged in their thermal growth profile. We measured allele specific expression (ASE) in the species’ hybrid at three temperatures, the highest of which is lethal to S. uvarum but not the hybrid or S. cerevisiae. We find that S. uvarum alleles can be expressed at the same level as S. cerevisiae alleles at high temperature and most cis-acting differences in gene expression are not dependent on temperature. While a small set of 136 genes show temperature-dependent ASE, we find no indication that signatures of directional cis-regulatory evolution are associated with temperature. Within promoter regions we find binding sites enriched upstream of temperature responsive genes, but only weak correlations between binding site and expression divergence. Our results indicate that temperature divergence between S. cerevisiae and S. uvarum has not caused widespread divergence in cis-regulatory activity, but point to a small subset of genes where the species’ alleles show differences in magnitude or opposite responses to temperature. The difficulty of explaining divergence in cis-regulatory sequences with models of transcription factor binding sites and nucleosome positioning highlights the importance of identifying mutations that underlie cis-regulatory divergence between species.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Konstantinos Drosatos ◽  
Nina Pollak ◽  
Panagiotis Ntziachristos ◽  
Chad M Trent ◽  
Yunying Hu ◽  
...  

Krüppel-like factors (KLF) have been associated with metabolic phenotypes. Our study focused on the metabolic role of cardiac KLF5, as it showed the highest increase among all KLFs that were detected by whole genome microarrays of energy-starved hearts obtained from lipopolysaccharide (LPS)-treated mice. Analysis of ppara promoter indicated two potential binding sites for c-Jun (AP-1 sites), the transcriptional factor that is activated by LPS and reduces cardiac PPARα expression: −792/-772 bp and −719/-698 bp prior to the transcription initiation site. This analysis showed that both AP-1 sites overlap with potential KLF-binding sites. Adenovirus-mediated expression of constitutively active c-Jun in a mouse cardiomyocyte cell line (HL-1) reduced PPARα gene expression, while treatment with Ad-KLF5 had the opposite effect. Chromatin immunoprecipitation analysis (ChIP) showed that c-Jun binds both −792/-772 bp and −719/-698 sites of ppara promoter while KLF5 binds on −792/-772 bp. ChIP analysis also showed that LPS promotes c-Jun binding on −792/-772 bp, which prohibits occupation of this region by KLF5. A cardiomyocyte-specific KLF5 knockout mouse (αMHC-KLF5-/-) had normal cardiac function but reduced cardiac expression of PPARα (50%) and other fatty acid metabolism-associated genes such as CD36 (40%), LpL (20%), PGC1α (45%), AOX (28%) and Cpt1 (45%). High fat diet (HFD)-fed αMHC-KLF5-/- mice had a more profound body weight increase (35%) compared to HFD-fed WT mice (15%), as well as larger white adipocytes and brown adipocytes (H&E) and increased hepatic neutral lipid accumulation (Oil-Red-O). The obesogenic effect of cardiomyocyte-specific deletion of KLF5 resembles the phenotype of the αMHC-MED13-/- mice. We showed that KLF5 ablation reduced cardiac MED13 levels despite lack of changes in the expression levels of miR-208, a known regulator of MED13. Infection of HL-1 cells with Ad-KLF5 increased MED13 gene expression. ChIP identified a KLF5 binding site on med13 gene promoter region (-730/-714 bp). Thus, KLF5 regulates cardiac PPARα and MED13 and affects cardiac and systemic fatty acid metabolism and obesity, thus indicating KLF5 as a potential target for cardiac dysfunction associated with energetic complications, as well as for obesity


2008 ◽  
Vol 36 (6) ◽  
pp. 1262-1266 ◽  
Author(s):  
Kelly A. Jackson ◽  
Ruth A. Valentine ◽  
Lisa J. Coneyworth ◽  
John C. Mathers ◽  
Dianne Ford

Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3620-3620
Author(s):  
Yang Liu ◽  
Min Ni ◽  
Aldo M. Roccaro ◽  
Xavier Leleu ◽  
Yong Zhang ◽  
...  

Abstract Abstract 3620 Introduction: Waldenstrom macroglobulinemia (WM) is a rare indolent non-Hodgkin lymphoma, characterized by bone marrow infiltration of clonal lymphoplasmacytic cells. Despite recent advances in understanding the pathogenesis of this disease, the molecular basis of WM etiology has not been clearly defined. We therefore performed genome-wide analysis of RNA polymerase II (pol II) binding sites and gene expression profiling in primary WM cells in order to comprehensively define the aberrant transcriptional regulation and related genes in WM. Methods: Primary CD19+ bone marrow derived WM cells and normal primary bone marrow were used. Genomic DNA was extracted using genome isolation kit (QIAGEN) after cross linking. All the DNA samples were sent for Chip assay and human promoter 1.0R array (Genepathway Inc.) which comprised of over 4.6 million probes tiled through over 25.500 human promoter regions. Each promoter region covers approximately 7.6kb upstream through 2.45kb downstream of the transcription start sites. For over 1,300 cancer associated genes, coverage of promoter regions was expanded to additional genomic content; for selected genes total coverage spans from 10kb upstream through 2.45kb downstream of transcription start sites. The published gene expression datasets (GDS2643) which included 10 CD19+ B cell from bone marrow of 10 WM patients and 8 normal controls was analyzed by d-chip software and normalized to normal control. The motif analysis was performed using Cistrome online tools from the Dana Farber Cancer Institute. The gene sets enrichment analysis (GSEA) was performed using GSEA online software from Broad institute. Results: A total of 13,546 high-confidence pol II sites were identified in WM samples and share a small percentage of overlap (11.5%) with the binding sites identified in normal controls. Combining the expression microarray data of WM patient samples and normal controls, we demonstrated a significant correlation between high levels of gene expression and enriched promoter binding of pol II. Notably, we also observed that the WM-unique pol II binding sites are localized in the promoters of 5,556 genes which are involved in important signaling pathways, such as Jak/STAT and MAPK pathways by applying gene set enrichment analysis (GSEA). Interestingly, we found that STAT, FOXO and IRF family binding sites motifs were enriched in the pol II-bound promoter region of IL-6 which plays a crucial role in cell proliferation and survival of WM cells. Moreover, the CpG island associated c-fos promoter was enriched for Pol II binding as compared to the normal control. Conclusion: The presence of increased Pol II binding and the identification of transcription factor motifs in the promoters of key oncogenes may lead to a better understanding of WM. Our findings suggest that altered transcriptional regulation may play an important role in the pathogenesis of WM. In addition, this study will provide novel insights into the molecular mechanism of WM etiology, and may lead to discovery of novel diagnostic molecular biomarkers and therapeutic targets for WM. Disclosures: Leleu: Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document