scholarly journals Range Variability in CMR Feature Tracking Multilayer Strain across Different Stages of Heart Failure

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Radu Tanacli ◽  
Djawid Hashemi ◽  
Tomas Lapinskas ◽  
Frank Edelmann ◽  
Rolf Gebker ◽  
...  

Abstract Heart failure (HF) is associated with progressive ventricular remodeling and impaired contraction that affects distinctly various regions of the myocardium. Our study applied cardiac magnetic resonance (CMR) feature tracking (FT) to assess comparatively myocardial strain at 3 distinct levels: subendocardial (Endo-), mid (Myo-) and subepicardial (Epi-) myocardium across an extended spectrum of patients with HF. 59 patients with HF, divided into 3 subgroups as follows: preserved ejection fraction (HFpEF, N = 18), HF with mid-range ejection fraction (HFmrEF, N = 21), HF with reduced ejection fraction (HFrEF, N = 20) and a group of age- gender- matched volunteers (N = 17) were included. Using CMR FT we assessed systolic longitudinal and circumferential strain and strain-rate at Endo-, Myo- and Epi- levels. Strain values were the highest in the Endo- layer and progressively lower in the Myo- and Epi- layers respectively, this gradient was present in all the patients groups analyzed but decreased progressively in HFmrEF and further on in HFrEF groups. GLS decreased with the severity of the disease in all 3 layers: Normal > HFpEF > HFmrEF > HFrEF (Endo-: −23.0 ± 3.5 > −20.0 ± 3.3 > −16.4 ± 2.2 > −11.0 ± 3.2, p < 0.001, Myo-: −20.7 ± 2.4 > −17.5.0 ± 2.6 > −14.5 ± 2.1 > −9.6 ± 2.7, p < 0.001; Epi-: −15.7 ± 1.9 > −12.2 ± 2.1 > −10.6 ± 2.3 > −7.7 ± 2.3, p < 0.001). In contrast, GCS was not different between the Normal and HFpEF (Endo-: −34.5 ± 6.2 vs −33.9 ± 5.7, p = 0.51; Myo-: −21.9 ± 3.8 vs −21.3 ± 2.2, p = 0.39, Epi-: −11.4 ± 2.0 vs −10.9 ± 2.3, p = 0.54) but was, as well, markedly lower in the systolic heart failure groups: Normal > HFmrEF > HFrEF (Endo-: −34.5 ± 6.2 > −20.0 ± 4.2 > 12.3 ± 4.2, p < 0.001; Myo-: −21.9 ± 3.8 > −13.0 ± 3.4 > −8.0 ± 2.7. p < 0.001; Epi-: −11.4 ± 2.0 > −7.9 ± 2.3 > −4.5 ± 1.9. p < 0.001). CMR feature tracking multilayer strain assessment identifies large range differences between distinct myocardial regions. Our data emphasizes the importance of sub-endocardial myocardium for cardiac contraction and thus, its predilect role in imaging detection of functional impairment. CMR feature tracking offers a convenient, readily available, platform to evaluate myocardial contraction with excellent spatial resolution, rendering further details about discrete areas of the myocardium. Using this technique across distinct groups of patients with heart failure (HF), we demonstrate that subendocardial regions of the myocardium exhibit much higher strain values than mid-myocardium or subepicardial and are more sensitive to detect contractile impairment. We also show comparatively higher values of circumferential strain compared with longitudinal and a higher sensitivity to detect contractile impairment. A newly characterized group of patients, HF with mid-range ejection fraction (EF), shows similar traits of decompensation but has relatively higher strain values as patients with HF with reduced EF.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R Tanacli ◽  
D Hashemi ◽  
T Lapinskas ◽  
H.-D Duengen ◽  
F Edelmann ◽  
...  

Abstract Introduction Muscular architecture of the heart is three dimensionally complex and contractility parameters vary widely. Cardiac magnetic resonance (CMR) feature tracking is a largely available and facile method to assess myocardial strain at different layers of the myocardium. Purpose Assessing and compare the myocardial longitudinal (GLS) and circumferential strain (GCS) at three distinct layers of the myocardium in patients with heart failure (HF). Methods 59 patients with a clinical diagnosis of HF who were post-hoc subdivided according to the measured EF and echo assessment of diastolic impairment into 3 groups, following ESC guidelines, were included: (1) patients with HF with preserved ejection fraction (HFpEF) where EF >50% and diastolic dysfunction (E/e' ratio) is present and plasma levels of natriuretic peptides are elevated, (2) patients with HF with mid-range ejection fraction (HFmrEF), where EF = 40–49% and similar additional criterias are present, (3) patients with HF with reduced ejection fraction (HFrEF) where EF <40%. Exclusion criteria: valvulopathy, arrhythmias, insufficient acquisition and artefacts. Results Strain values are the highest in the Endo− and progressively lower in the Myo− and Epi− layers with a gradient present in all groups but decreasing in HFmEF and further in HFrEF. GLS decrease with the severity of the disease in all 3 layers Normal > HFpEF > HFmrEF > HFrEF (Endo−: −23.0±3.5 vs −20.0±3.3 vs −16.4±2.2 vs −11.0±3.2, p<0.001, Myo−: −20.7±2.4 vs −17.5.0±2.6 vs −14.5±2.1 vs −9.6±2.7, p<0.001, Epi−: −15.7±1.9 vs −12.2±2.1 vs −10.6±2.3 vs −7.7±2.3, p<0.001) (Figure A), GCS is not different between the Normal and HFpEF (Endo−: −34.5±6.2 vs −33.9±5.7, p=0.51; Myo−: −21.9±3.8 vs −21.3±2.2, p=0.39; Epi−: −11.4±2.0 vs −10.9±2.3, p=0.54) but markedly lower in systolic HF groups Normal > HFmrEF > HFrEF (Endo−: −34.5±6.2 vs −20.0±4.2 vs −12.3±4.2, p<0.001; Myo−: −21.9±3.8 vs −13.0±3.4 vs −8.0±2.7, p<0.001; Epi−: −11.4±2.0 vs −7.9±2.3 vs −4.5±1.9) (Figure B). ROC analysis renders Endo− GCS (AUC=0.89) and respectively Endo− GLS (AUC=0.74) as optimal to detect contractile impairment in HF with Youden's thresholds of −20.2 for Endo− GLS and, respectively, −28.1 for Endo− GCS. Endo− GCS is not different between control and HFpEF and GLS impairment is present only inconstantly in HFpEF. Conclusions Feature tracking CMR successfully assess layer-specific myocardial strain and emerges as a powerful tool in functional stratification of patients with HF. Strain amplitude varies consistently throughout the myocardium and its quantification warrants careful standardization. Sub-endocardial strain values of strain are comparatively the highest and show most predictive power to detect contractile impairment. Underlying systolic impairment is present only in a subgroup of patients with HFpEF and only GLS and not the GCS is for this purpose a useful diagnostic tool.


2011 ◽  
pp. 62-70
Author(s):  
Lien Nhut Nguyen ◽  
Anh Vu Nguyen

Background: The prognostic importance of right ventricular (RV) dysfunction has been suggested in patients with systolic heart failure (due to primary or secondary dilated cardiomyopathy - DCM). Tricuspid annular plane systolic excursion (TAPSE) is a simple, feasible, reality, non-invasive measurement by transthoracic echocardiography for evaluating RV systolic function. Objectives: To evaluate TAPSE in patients with primary or secondary DCM who have left ventricular ejection fraction ≤ 40% and to find the relation between TAPSE and LVEF, LVDd, RVDd, RVDd/LVDd, RA size, severity of TR and PAPs. Materials and Methods: 61 patients (36 males, 59%) mean age 58.6 ± 14.4 years old with clinical signs and symtomps of chronic heart failure which caused by primary or secondary DCM and LVEF ≤ 40% and 30 healthy subject (15 males, 50%) mean age 57.1 ± 16.8 were included in this study. All patients and controls were underwent echocardiographic examination by M-mode, two dimentional, convensional Dopler and TAPSE. Results: TAPSE is significant low in patients compare with the controls (13.93±2.78 mm vs 23.57± 1.60mm, p<0.001). TAPSE is linearly positive correlate with echocardiographic left ventricular ejection fraction (r= 0,43; p<0,001) and linearly negative correlate with RVDd (r= -0.39; p<0.01), RVDd/LVDd (r=-0.33; p<0.01), RA size (r=-0.35; p<0.01), TR (r=-0.26; p<0.05); however, no correlation was found with LVDd and PAPs. Conclusions: 1. Decreased RV systolic function as estimated by TAPSE in patients with systolic heart failure primary and secondary DCM) compare with controls. 2. TAPSE is linearly positive correlate with LVEF (r= 0.43; p<0.001) and linearly negative correlate with RVDd (r= -0.39; p<0.01), RVDd/LVDd (r=-0.33; p<0.01), RA size (r=-0.35; p<0.01), TR (r=-0.26; p<0.05); however, no correlation is found with LVDd and PAPs. 3. TAPSE should be used routinely as a simple, feasible, reality method of estimating RV function in the patients systolic heart failure DCM (primary and secondary).


Kardiologiia ◽  
2021 ◽  
Vol 61 (8) ◽  
pp. 68-75
Author(s):  
E. K. Serezhina ◽  
A. G. Obrezan

This systematic review is based on 19 studies from Elsevier, PubMed, Embase, and Scopus databases, which were found by the following keywords: LA strain (left atrial strain), STE (speckle tracking echocardiography), HF (heart failure), and HFpEF (heart failure with preserved ejection fraction). The review focuses on results and conclusions of studies on using the 2D echocardiographic evaluation of left atrial (LA) myocardial strain for early diagnosis of HFpEF in routine clinical practice. Analysis of the studies included into this review showed a significant decline of all LA functions in patients with HFpEF. Also, multiple studies have reported associations between decreased indexes of LA strain and old age, atrial fibrillation, left ventricular hypertrophy, left and right ventricular systolic dysfunction, and LV diastolic dysfunction. Thus, the review indicates significant possibilities of using indexes of LA strain in evaluation of early stages of both systolic and diastolic myocardial dysfunction. Notably, LA functional systolic and diastolic indexes are not sufficiently studied despite their growing significance for diagnosis and prognosis of patients with HFpEF. For this reason, in addition to existing models for risk stratification in this disease, including clinical characteristics and/or echocardiographic data, future studies should focus on these parameters. 


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ayesha Azmeen ◽  
Naga Vaishnavi Gadela ◽  
Vergara Cunegundo

Introduction: Heart failure(HF) is a clinical syndrome that is widely prevalent affecting approximately 6.5 million people in the United States. It accounts for the ever-rising health care costs in the US due to recurrent hospitalizations. Despite advancements in medical management, the mortality and the rate of hospitalizations continues to be high with geographic variations and racial disparities. Through this descriptive study, we sought to analyze the health disparities among Hispanic, African American (AA) and Caucasian population in a single-center. Methods: We identified a total of 178 patients with HF with reduced ejection fraction from our outpatient clinic by utilizing the ICD-10 codes. Patients with ejection fraction >50% have been excluded. A retrospective chart review of their ethnic background, medications, and number of heart failure exacerbations per year has been performed. Results: 178 patients (mean age 62 years, 35.56% of females) including Hispanics (n=102), AA(n=44), and Caucasians (n=32) were included in the study. Although all patients were started on Beta-blockers, only 76.4% and 37.2% of Hispanics were started on ACEi/ARBs and spironolactone respectively. Similarly, 72.7% and 45.4% of AA were started on ACEi/ARBs and spironolactone respectively. This is in contrast to Caucasians population, where a majority of patients were on started on GDMT; 90% and 75% were started on ACEi/ARBs and spironolactone respectively. This was also reflected by the number of admissions due to HF exacerbations which ranged from 2-4/year for Hispanics and AA populations and 0-1/year for Caucasians. Conclusions: GDMT for HF is known to reduce heart failure exacerbations, mortality and the ever rising cost of the healthcare system. We have observed that despite recommendations to initiate GDMT in all patients with HF with reduced ejection fraction, racial disparities exist. Physicians should be mindful of initiating GDMT in all patients.


Author(s):  
Jin Joo Park ◽  
Alexandre Mebazaa ◽  
In‐Chang Hwang ◽  
Jun‐Bean Park ◽  
Jae‐Hyeong Park ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Laura Houard ◽  
Mihaela S. Amzulescu ◽  
Geoffrey Colin ◽  
Helene Langet ◽  
Sebastian Militaru ◽  
...  

Background: Pulmonary transit time (PTT) from first-pass perfusion imaging is a novel parameter to evaluate hemodynamic congestion by cardiac magnetic resonance (cMR). We sought to evaluate the additional prognostic value of PTT in heart failure with reduced ejection fraction over other well-validated predictors of risk including the Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Methods: We prospectively followed 410 patients with chronic heart failure with reduced ejection fraction (61±13 years, left ventricular (LV) ejection fraction 24±7%) who underwent a clinical cMR to assess the prognostic value of PTT for a primary endpoint of overall mortality and secondary composite endpoint of cardiovascular death and heart failure hospitalization. Normal reference values of PTT were evaluated in a population of 40 asymptomatic volunteers free of cardiovascular disease. Results PTT was significantly increased in patients with heart failure with reduced ejection fraction as compared to controls (9±6 beats and 7±2 beats, respectively, P <0.001), and correlated not only with New York Heart Association class, cMR–LV and cMR–right ventricular (RV) volumes, cMR-RV and cMR-LV ejection fraction, and feature tracking global longitudinal strain, but also with cardiac output. Over 6-year median follow-up, 182 patients died and 200 reached the secondary endpoint. By multivariate Cox analysis, PTT was an independent and significant predictor of both endpoints after adjustment for Meta-Analysis Global Group in Chronic Heart Failure risk score and ischemic cause. Importantly in multivariable analysis, PTT in beats had significantly higher additional prognostic value to predict not only overall mortality (χ 2 to improve, 12.3; hazard ratio, 1.35 [95% CI, 1.16–1.58]; P <0.001) but also the secondary composite endpoints (χ 2 to improve=20.1; hazard ratio, 1.23 [95% CI, 1.21–1.60]; P <0.001) than cMR-LV ejection fraction, cMR-RV ejection fraction, LV–feature tracking global longitudinal strain, or RV–feature tracking global longitudinal strain. Importantly, PTT was independent and complementary to both pulmonary artery pressure and reduced RV ejection fraction<42% to predict overall mortality and secondary combined endpoints. Conclusions: Despite limitations in temporal resolution, PTT derived from first-pass perfusion imaging provides higher and independent prognostic information in heart failure with reduced ejection fraction than clinical and other cMR parameters, including LV and RV ejection fraction or feature tracking global longitudinal strain. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03969394.


Sign in / Sign up

Export Citation Format

Share Document