scholarly journals A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Dinarvand ◽  
Mohammadreza Nademi Rostami ◽  
Ioan Pop

Abstract In this study, we are going to investigate semi-analytically the steady laminar incompressible two-dimensional boundary layer flow of a TiO2-CuO/water hybrid nanofluid over a static/moving wedge or corner that is called Falkner-Skan problem. A novel mass-based approach to one-phase hybrid nanofluid model that suggests both first and second nanoparticles as well as base fluid masses as the vital inputs to obtain the effective thermophysical properties of our hybrid nanofluid, has been presented. Other governing parameters are moving wedge/corner parameter (λ), Falkner-Skan power law parameter (m), shape factor parameter (n) and Prandtl number (Pr). The governing partial differential equations become dimensionless with help of similarity transformation method, so that we can solve them numerically using bvp4c built-in function by MATLAB. It is worthwhile to notice that, validation results exhibit an excellent agreement with already existing reports. Besides, it is shown that both hydrodynamic and thermal boundary layer thicknesses decrease with the second nanoparticle mass as well as Falkner-Skan power law parameter. Further, we understand our hybrid nanofluid has better thermal performance relative to its mono-nanofluid and base fluid, respectively. Moreover, a comparison between various values of nanoparticle shape factor and their effect on local heat transfer rate is presented. It is proven that the platelet shape of both particles (n1 = n2 = 5.7) leads to higher local Nusselt number in comparison with other shapes including sphere, brick and cylinder. Consequently, this algorithm can be applied to analyze the thermal performance of hybrid nanofluids in other different researches.

1964 ◽  
Vol 86 (2) ◽  
pp. 259-264 ◽  
Author(s):  
R. A. Seban

Experiments on a system in which separation of a turbulent boundary layer occurred at a downward step in the surface of a plate and reattached on the plate downstream of the step have produced additional results for the local heat-transfer coefficient and for the velocity and temperature distribution in the separated and reattached regions of the flow. In neither region was there found the kind of similarity near the wall that characterizes flows that are dominated by the friction at the wall, so that even this first element of the usual rationalization of the heat transfer is unavailable for the interpretation of the results. The effect of suction or injection through a slot at the base of the step is also indicated and this demonstrates relatively small effects on both the pressure distribution and the local heat-transfer coefficient.


Author(s):  
D. O. O’Dowd ◽  
Q. Zhang ◽  
L. He ◽  
M. L. G. Oldfield ◽  
P. M. Ligrani ◽  
...  

This paper presents an experimental and numerical investigation of the aero-thermal performance of an uncooled winglet tip, under transonic conditions. Spatially-resolved heat transfer data, including winglet tip surface and near tip side walls, are obtained using the transient infrared thermography technique within the Oxford High Speed Linear Cascade test facility. CFD predictions are also conducted using the Rolls-Royce HYDRA suite. Most of the spatial heat transfer variations on the tip surface are well-captured by the CFD solver. The transonic flow pattern and its influence on heat transfer are analyzed, which shows that the turbine blade tip heat transfer is greatly influenced by the shock wave structure inside the tip gap. The effect of the casing relative motion is also numerically investigated. The CFD results indicate that the local heat transfer distribution on the tip is affected by the relative casing motion, but the tip flow choking and shock wave structure within the tip gap still exist in the aft region of the blade.


1983 ◽  
Vol 105 (3) ◽  
pp. 465-468 ◽  
Author(s):  
L. S. Yao

A transformation method is applied to study the natural convection along irregular vertical surfaces. A sinusoidal surface is used as a specific example to demonstrate the advantages of the transformation method, and to elucidate the heat transfer mechanism near such surfaces. The numerical results show that the frequency of the local heat transfer rate is twice that of the wavy surface. The amplitude of the oscillating local Nusselt number gradually decreases downstream where the natural convection boundary layer grows thick.


Author(s):  
S. Huang ◽  
Y. Y. Yan ◽  
J. D. Maltson ◽  
E. Utriainen

Experiments have been conducted to investigate the overall thermal performance of a rectangular channel implemented with an elongated pedestal array. The staggered pedestals were elongated in the spanwise direction in order that the jet flow from between the pedestals impinges at the centre of the pedestals in the downstream row. The average heat transfer coefficient of the pedestal and the local heat transfer coefficient distribution of the bottom channel wall were investigated for different geometrical arrangements. The pressure drop across the pedestal bank was measured. The transient liquid crystal method was used to obtain the local heat transfer coefficient distribution on the bottom channel wall and the lumped capacitance method was used to measure the average heat transfer coefficient of the pedestals in the last two rows of the bank. Five pressure taps were arranged on the centerline of each gap between two pedestal rows to measure the pressure drop. The heat transfer coefficients were measured over the Reynolds number range from 10,000 to 30,000. The minimum flow area to the channel cross-section flow area ratio ranged from 0.149 to 0.333. The effects of pedestal geometry and array distribution were investigated in detail showing the relationship between the pedestal array geometry, heat transfer enhancement and pressure drop. Conclusions were drawn on the effects of geometry and flow conditions on overall thermal performance of the respective channels.


Author(s):  
Y. Janeborvorn ◽  
T. P. Filburn ◽  
C. C. Yavuzturk ◽  
E. K. Ungar

Hydrophobic, micropore membrane evaporators are studied for use in waste heat rejection in new generation spacesuits developed by the U.S. National Aeronautics and Space Administration (NASA). The waste heat rejection is accomplished via evaporation of liquid water through membrane pores, whereby the hydrophobic membrane allows only water vapor to pass through and retains the liquid phase inside the membrane water channel, allowing the waste heat rejection through the proposed spacesuit water membrane evaporator (SWME) system to be significantly less sensitive to contamination while improving the overall contaminant and system control. Although SWME uses the same heat transport loop as used in current NASA sublimator systems, thus eliminating the need for a separate feedwater system, it permits the system configuration to be simpler and more compact while also eliminating corrosion problems and reducing system freeze-up potential. An improved thermal performance model based on membrane segment energy balances is presented, which is a spacesuit water membrane evaporator for a single circular annulus water channel bounded by two annular vapor channels. The model allows for the investigation of the local heat transfer characteristics along the annulus including temperature gradients in the membrane wall and the water channel using a steady-state approach. The model also accounts for the effects of thermal and hydraulic entry lengths, far field radiation, and energy carried away by the mass of water evaporation. The local heat transfer analysis enables the straightforward calculation of the overall magnitude of heat transfer from the SWME. A model validation is presented via the sum of the squares error analyses between the model predictions and the experimental results.


1960 ◽  
Vol 82 (2) ◽  
pp. 101-107 ◽  
Author(s):  
R. A. Seban

Local heat-transfer coefficients and recovery factors are presented for three different cylinders in a two-dimensional subsonic air flow, with emphasis on the effect of screen-produced turbulence on these quantities. The increase in turbulent intensity so realized produced larger local heat-transfer coefficients, in a way dependent upon the location on the cylinders, through a direct increase in the heat transfer to the laminar boundary layer, through an earlier transition to turbulence, or through an alteration in the character of the separated flow. Alternatively, recovery factors were affected less, being invariant with respect to the turbulent intensity for attached boundary layer flow, but demonstrating large changes in those separated flow regions for which increased free stream turbulence produced substantial changes in the nature of the separated flow.


Sign in / Sign up

Export Citation Format

Share Document