scholarly journals Direct Conversion of Human Urine Cells to Neurons by Small Molecules

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guosheng Xu ◽  
Feima Wu ◽  
Xiaotong Gu ◽  
Jiaye Zhang ◽  
Kai You ◽  
...  

Abstract Transdifferentiation of other cell type into human neuronal cells (hNCs) provides a platform for neural disease modeling, drug screening and potential cell-based therapies. Among all of the cell donor sources, human urine cells (hUCs) are convenient to obtain without invasive harvest procedure. Here, we report a novel approach for the transdifferentiation of hUCs into hNCs. Our study demonstrated that a combination of seven small molecules (CAYTFVB) cocktail induced transdifferentiation of hUCs into hNCs. These chemical-induced neuronal cells (CiNCs) exhibited typical neuron-like morphology and expressed mature neuronal markers. The neuronal-like morphology revealed in day 1, and the Tuj1-positive CiNCs reached to about 58% in day 5 and 38.36% Tuj1+/MAP2+ double positive cells in day 12. Partial electrophysiological properties of CiNCs was obtained using patch clamp. Most of the CiNCs generated using our protocol were glutamatergic neuron populations, whereas motor neurons, GABAergic or dopaminergic neurons were merely detected. hUCs derived from different donors were converted into CiNCs in this work. This method may provide a feasible and noninvasive approach for reprogramming hNCs from hUCs for disease models and drug screening.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shu-Zhen Zhang ◽  
Li-Xiang Ma ◽  
Wen-Jing Qian ◽  
Hong-Fu Li ◽  
Zhong-Feng Wang ◽  
...  

Somatic cells can be directly converted into functional neurons by ectopic expression of defined factors and/or microRNAs. Since the first report of conversion mouse embryonic fibroblasts into functional neurons, the postnatal mouse, and human fibroblasts, astroglia, hepatocytes, and pericyte-derived cells have been converted into functional dopaminergic and motor neurons bothin vitroandin vivo. However, it is invasive to get all these materials. In the current study, we provide a noninvasive approach to obtain directly reprogrammed functional neurons by overexpression of the transcription factors Ascl1, Brn2, NeuroD, c-Myc, and Myt1l in human urine cells. These induced neuronal (iN) cells could express multiple neuron-specific proteins and generate action potentials. Moreover, urine cells from Wilson’s disease (WD) patient could also be directly converted into neurons. In conclusion, generation of iN cells from nonneural lineages is a feasible and befitting approach for neurological disease modeling.


2019 ◽  
Vol 10 (9) ◽  
Author(s):  
Xiu Sun ◽  
Zijian Tan ◽  
Xiao Huang ◽  
Xueyan Cheng ◽  
Yimin Yuan ◽  
...  

Abstract Direct conversion of readily available non-neural cells from patients into induced neurons holds great promise for neurological disease modeling and cell-based therapy. Olfactory ensheathing cells (OECs) is a unique population of glia in olfactory nervous system. Based on the regeneration-promoting properties and the relative clinical accessibility, OECs are attracting increasing attention from neuroscientists as potential therapeutic agents for use in neural repair. Here, we report that OECs can be directly, rapidly and efficiently reprogrammed into neuronal cells by the single transcription factor Neurogenin 2 (NGN2). These induced cells exhibit typical neuronal morphologies, express multiple neuron-specific markers, produce action potentials, and form functional synapses. Genome-wide RNA-sequencing analysis shows that the transcriptome profile of OECs is effectively reprogrammed towards that of neuronal lineage. Importantly, these OEC-derived induced neurons survive and mature after transplantation into adult mouse spinal cords. Taken together, our study provides a direct and efficient strategy to quickly obtain neuronal cells from adult OECs, suggestive of promising potential for personalized disease modeling and cell replacement-mediated therapeutic approaches to neurological disorders.


2019 ◽  
Author(s):  
Itaru Ninomiya ◽  
Masato Kanazawa ◽  
Akihide Koyama ◽  
Masahiro Hatakeyama ◽  
Osamu Onodera

SummaryPrevious studies reported that human fibroblasts and astrocytes were successfully converted into neuronal cells by small molecules without introducing ectopic transgenes. Induced neuronal cells—reprogrammed directly from dermal fibroblasts or brain astrocytes—were obtained from some donors; however, the clinical applications of this approach would be limited because it requires an invasive biopsy to harvest enough cells for derivation. Here, we report that adult human peripheral blood monocytes may be directly converted into neuron-like cells using only a combination of small molecules without transgene integration. This method enables neuronal cell generation from TUJ1-positive cells after 3 days of induction (at over 80% conversion efficacy). These cells presented neuronal morphologies and markers, suggesting that terminally differentiated human cells may be efficiently transdifferentiated into a distantly related lineage. Overall, our study provides a strategy to develop neuronal cells directly from human adult peripheral blood monocytes using a generate transgene-free, chemical-only approach.


2015 ◽  
Vol 17 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Wenxiang Hu ◽  
Binlong Qiu ◽  
Wuqiang Guan ◽  
Qinying Wang ◽  
Min Wang ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 966
Author(s):  
Xv Zhang ◽  
Liling Tang ◽  
Qian Yi

The vasculature of stem-cell-derived liver organoids can be engineered using methods that recapitulate embryonic liver development. Hepatic organoids with a vascular network offer great application prospects for drug screening, disease modeling, and therapeutics. However, the application of stem cell-derived organoids is hindered by insufficient vascularization and maturation. Here, we review different theories about the origin of hepatic cells and the morphogenesis of hepatic vessels to provide potential approaches for organoid generation. We also review the main protocols for generating vascularized liver organoids from stem cells and consider their potential and limitations in the generation of vascularized liver organoids.


Author(s):  
Ping Huang ◽  
Jieying Zhu ◽  
Yu Liu ◽  
Guihuan Liu ◽  
Ran Zhang ◽  
...  

Abstract Background Four transcription factors, Oct4, Sox2, Klf4, and c-Myc (the Yamanka factors), can reprogram somatic cells to induced pluripotent stem cells (iPSCs). Many studies have provided a number of alternative combinations to the non-Yamanaka factors. However, it is clear that many additional transcription factors that can generate iPSCs remain to be discovered. Methods The chromatin accessibility and transcriptional level of human embryonic stem cells and human urine cells were compared by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to identify potential reprogramming factors. Selected transcription factors were employed to reprogram urine cells, and the reprogramming efficiency was measured. Urine-derived iPSCs were detected for pluripotency by Immunofluorescence, quantitative polymerase chain reaction, RNA sequencing and teratoma formation test. Finally, we assessed the differentiation potential of the new iPSCs to cardiomyocytes in vitro. Results ATAC-seq and RNA-seq datasets predicted TEAD2, TEAD4 and ZIC3 as potential factors involved in urine cell reprogramming. Transfection of TEAD2, TEAD4 and ZIC3 (in the presence of Yamanaka factors) significantly improved the reprogramming efficiency of urine cells. We confirmed that the newly generated iPSCs possessed pluripotency characteristics similar to normal H1 embryonic stem cells. We also confirmed that the new iPSCs could differentiate to functional cardiomyocytes. Conclusions In conclusion, TEAD2, TEAD4 and ZIC3 can increase the efficiency of reprogramming human urine cells into iPSCs, and provides a new stem cell sources for the clinical application and modeling of cardiovascular disease. Graphical abstract


2017 ◽  
Vol 23 (12) ◽  
pp. 1424-1435 ◽  
Author(s):  
Laura Broutier ◽  
Gianmarco Mastrogiovanni ◽  
Monique MA Verstegen ◽  
Hayley E Francies ◽  
Lena Morrill Gavarró ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document