scholarly journals Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerel Adam Fields ◽  
Mary K. Swinton ◽  
Aliyah Carson ◽  
Benchawanna Soontornniyomkij ◽  
Charmaine Lindsay ◽  
...  

AbstractMounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1β and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1β-mediated increases in IL-1β and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain.

2007 ◽  
Vol 293 (5) ◽  
pp. E1188-E1197 ◽  
Author(s):  
Emilio P. Mottillo ◽  
Xiang Jun Shen ◽  
James G. Granneman

Free fatty acids (FFA) are important extracellular and intracellular signaling molecules and are thought to be involved in β-adrenergic-induced remodeling of adipose tissue, which involves a transient inflammatory response followed by mitochondrial biogenesis and increased oxidative capacity. This work examined the role of hormone-sensitive lipase (HSL), a key enzyme of acylglycerol metabolism, in white adipose tissue (WAT) remodeling using genetic inactivation or pharmacological inhibition. Acute treatment with the β3-adrenergic agonist CL-316,243 (CL) induced expression of inflammatory markers and caused extravasation of myeloid cells in WAT of wild-type (WT) mice. HSL-knockout (KO) mice had elevated inflammatory gene expression in the absence of stimulation, and acute injection of CL did not further recruit myeloid cells, nor did it further elevate inflammatory gene expression. Acute pharmacological inhibition of HSL with BAY 59-9435 (BAY) had no effect on inflammatory gene expression in WAT or in cultured 3T3-L1 adipocytes. However, BAY prevented induction of inflammatory cytokines by β-adrenergic stimulation in WAT in vivo and in cultured 3T3-L1 adipocytes. Chronic CL treatment stimulated mitochondrial biogenesis, expanded oxidative capacity, and increased lipid droplet fragmentation in WT mice, and these effects were significantly impaired in HSL-KO mice. In contrast to HSL-KO mice, mice with defective signaling of Toll-like receptor 4, a putative FFA receptor, showed normal β-adrenergic-induced remodeling of adipose tissue. Overall, results reveal the importance of HSL activity in WAT metabolic plasticity and inflammation.


2017 ◽  
Vol 178 (1) ◽  
Author(s):  
A.G. Ortega‐Loayza ◽  
W.H. Nugent ◽  
O.M. Lucero ◽  
S.L. Washington ◽  
J.R. Nunley ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Diego Guerrieri ◽  
Luis Re ◽  
Jorgelina Petroni ◽  
Nella Ambrosi ◽  
Roxana E. Pilotti ◽  
...  

Background.Delayed graft function (DGF) remains an important problem after kidney transplantation and reduced long-term graft survival of the transplanted organ. The aim of the present study was to determine if the development of DGF was associated with a specific pattern of inflammatory gene expression in expanded criteria of deceased donor kidney transplantation. Also, we explored the presence of correlations between DGF risk factors and the profile that was found.Methods.Seven days after kidney transplant, a cDNA microarray was performed on biopsies of graft from patients with and without DGF. Data was confirmed by real-time PCR. Correlations were performed between inflammatory gene expression and clinical risk factors.Results.From a total of 84 genes analyzed, 58 genes were upregulated while only 1 gene was downregulated in patients with DGF compared with no DGF (P=0.01). The most relevant genes fold changes observed was IFNA1, IL-10, IL-1F7, IL-1R1, HMOX-1, and TGF-β. The results were confirmed for IFNA1, IL-1R1, HMOX-1 and TGF-β. A correlation was observed between TGF-β, donor age, and preablation creatinine, but not body mass index (BMI). Also, TGF-βshowed an association with recipient age, while IFNA1 correlated with recipient BMI. Furthermore, TGF-β, IFNA1 and HMOX-1 correlated with several posttransplant kidney function markers, such as diuresis, ultrasound Doppler, and glycemia.Conclusions.Overall, the present study shows that DGF is associated with inflammatory markers, which are correlated with donor and recipient DGF risk factors.


2006 ◽  
Vol 49 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Chun-Jung Chen ◽  
Yen-Chuan Ou ◽  
Shih-Yi Lin ◽  
Su-Lan Liao ◽  
Shih-Yun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document