scholarly journals Feasibility of kilohertz frequency alternating current neuromodulation of carotid sinus nerve activity in the pig

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cathrine T. Fjordbakk ◽  
Jason A. Miranda ◽  
David Sokal ◽  
Matteo Donegà ◽  
Jaime Viscasillas ◽  
...  

AbstractRecent research supports that over-activation of the carotid body plays a key role in metabolic diseases like type 2 diabetes. Supressing carotid body signalling through carotid sinus nerve (CSN) modulation may offer a therapeutic approach for treating such diseases. Here we anatomically and histologically characterised the CSN in the farm pig as a recommended path to translational medicine. We developed an acute in vivo porcine model to assess the application of kilohertz frequency alternating current (KHFAC) to the CSN of evoked chemo-afferent CSN responses. Our results demonstrate the feasibility of this approach in an acute setting, as KHFAC modulation was able to successfully, yet variably, block evoked chemo-afferent responses. The observed variability in blocking response is believed to reflect the complex and diverse anatomy of the porcine CSN, which closely resembles human anatomy, as well as the need for optimisation of electrodes and parameters for a human-sized nerve. Overall, these results demonstrate the feasibility of neuromodulation of the CSN in an anesthetised large animal model, and represent the first steps in driving KHFAC modulation towards clinical translation. Chronic recovery disease models will be required to assess safety and efficacy of this potential therapeutic modality for application in diabetes treatment.

2005 ◽  
Vol 102 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Malin M. Jonsson ◽  
Sten G. E. Lindahl ◽  
Lars I. Eriksson

Background Propofol decreases the acute hypoxic ventilatory response in humans and depresses in vivo carotid body chemosensitivity. The mechanisms behind this impaired oxygen sensing and signaling are not understood. Cholinergic transmission is involved in oxygen signaling, and because general anesthetics such as propofol have affinity to neuronal nicotinic acetylcholine receptors, the authors hypothesized that propofol depresses carotid body chemosensitivity and cholinergic signaling. Methods An isolated rabbit carotid body preparation was used. Chemoreceptor activity was recorded from the whole carotid sinus nerve. The effect of propofol on carotid body chemosensitivity was tested at three different degrees of PO2 reduction. Nicotine-induced chemoreceptor response was evaluated using bolus doses of nicotine given before and after propofol 10-500 microM. The contribution of the gamma-aminobutyric acid A receptor complex was tested by addition of gamma-aminobutyric acid A receptor antagonists. Results Propofol reduced carotid body chemosensitivity; the magnitude of depression was dependent on the reduction in PO2. Furthermore, propofol caused a concentration-dependent (10-500 microM) depression of nicotine-induced chemoreceptor response, with a 50% inhibitory concentration (propofol) of 40 microM. Bicuculline in combination with propofol did not have any additional effect, whereas addition of picrotoxin gave a slightly more pronounced inhibition. Conclusions It is concluded that propofol impairs carotid body chemosensitivity, the magnitude of depression being dependent on the severity of PO2 reduction, and that propofol causes a concentration-dependent block of cholinergic chemotransduction via the carotid sinus nerve, whereas it seems unlikely that an activation of the gamma-aminobutyric acid A receptor complex is involved in this interaction.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Luis Pichard ◽  
Francis Sgambati ◽  
Eric Kostuk ◽  
Pejmon Bashai ◽  
Robert Fitzgerald ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Silvia V. Conde ◽  
Joana F. Sacramento ◽  
Bernardete F. Melo ◽  
Rui Fonseca-Pinto ◽  
Mario I. Romero-Ortega ◽  
...  

Chronic carotid sinus nerve (CSN) electrical modulation through kilohertz frequency alternating current improves metabolic control in rat models of type 2 diabetes, underpinning the potential of bioelectronic modulation of the CSN as a therapeutic modality for metabolic diseases in humans. The CSN carries sensory information from the carotid bodies, peripheral chemoreceptor organs that respond to changes in blood biochemical modifications such as hypoxia, hypercapnia, acidosis, and hyperinsulinemia. In addition, the CSN also delivers information from carotid sinus baroreceptors—mechanoreceptor sensory neurons directly involved in the control of blood pressure—to the central nervous system. The interaction between these powerful reflex systems—chemoreflex and baroreflex—whose sensory receptors are in anatomical proximity, may be regarded as a drawback to the development of selective bioelectronic tools to modulate the CSN. Herein we aimed to disclose CSN influence on cardiovascular regulation, particularly under hypoxic conditions, and we tested the hypothesis that neuromodulation of the CSN, either by electrical stimuli or surgical means, does not significantly impact blood pressure. Experiments were performed in Wistar rats aged 10–12 weeks. No significant effects of acute hypoxia were observed in systolic or diastolic blood pressure or heart rate although there was a significant activation of the cardiac sympathetic nervous system. We conclude that chemoreceptor activation by hypoxia leads to an expected increase in sympathetic activity accompanied by compensatory regional mechanisms that assure blood flow to regional beds and maintenance of hemodynamic homeostasis. Upon surgical denervation or electrical block of the CSN, the increase in cardiac sympathetic nervous system activity in response to hypoxia was lost, and there were no significant changes in blood pressure in comparison to control animals. We conclude that the responses to hypoxia and vasomotor control short-term regulation of blood pressure are dissociated in terms of hypoxic response but integrated to generate an effector response to a given change in arterial pressure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Li ◽  
Mohamad I. Itani ◽  
Kevan J. Salimian ◽  
Yue Li ◽  
Olaya Brewer Gutierrez ◽  
...  

AbstractGastrointestinal (GI) strictures are difficult to treat in a variety of disease processes. Currently, there are no Food and Drug Administration (FDA) approved drugs for fibrosis in the GI tract. One of the limitations to developing anti-fibrotic drugs has been the lack of a reproducible, relatively inexpensive, large animal model of fibrosis-driven luminal stricture. This study aimed to evaluate the feasibility of creating a model of luminal GI tract strictures. Argon plasma coagulation (APC) was applied circumferentially in porcine esophagi in vivo. Follow-up endoscopy (EGD) was performed at day 14 after the APC procedure. We noted high grade, benign esophageal strictures (n = 8). All 8 strictures resembled luminal GI fibrotic strictures in humans. These strictures were characterized, and then successfully dilated. A repeat EGD was performed at day 28 after the APC procedure and found evidence of recurrent, high grade, fibrotic, strictures at all 8 locations in all pigs. Pigs were sacrificed and gross and histologic analyses performed. Histologic examination showed extensive fibrosis, with significant collagen deposition in the lamina propria and submucosa, as well as extensive inflammatory infiltrates within the strictures. In conclusion, we report a porcine model of luminal GI fibrotic stricture that has the potential to assist with developing novel anti-fibrotic therapies as well as endoscopic techniques to address recurring fibrotic strictures in humans.


2020 ◽  
Author(s):  
Chiara Da Pieve ◽  
Gabriela Kramer Marek ◽  
Jolanta Saczko ◽  
Anant Shah ◽  
Florian Raes

ABSTRACTAltough nanomaterial-mediated phototherapy has been extensively studied, the major antitumor success is limited to treating subcutaneous tumor on nude, lacking of clinically-relevant big animal study. Therefore, it is urgent to make further investigation on the typical big model, which is more closely related to the human body. In this work, niobium carbide (NbC) was selected as photoactive substance in virtue of its outstanding near infrared (NIR) absorption properties and resultantly NIR-triggered hyperthemia and reactive oxygen species generation for the synergetic photothermal and photodynamic effect. Moreover, macrophage was used as bio-carrier for the targeted delivery of NbC and the phagocytosis of macrophages was proved to be able to retain the photothermal/photodynamic effect of NbC. Resultantly, macrophage loaded NbC could realize complete removal of solid tumor on both of nude mice and big animal of rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) have been applied for monitoring the physiological evolutions of in vivo tumor post treatment, which clearly disclosed the photoablation process of tumor and provided a new way for the surveillance of tumor on the big animal study. Hence, large animal model study in this work presented higher clinical significance than the previous studies.SignificanceFindings show that niobium carbide carried by macrophages can be used for targeted phototherapy. At the same time, we applied the rabbit tumor model which is closer to the human body microenvironment.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2571
Author(s):  
Cristina Prat-Vidal ◽  
Verónica Crisóstomo ◽  
Isabel Moscoso ◽  
Claudia Báez-Díaz ◽  
Virginia Blanco-Blázquez ◽  
...  

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.


2018 ◽  
Vol 18 (10) ◽  
pp. 1896-1909 ◽  
Author(s):  
Tian Wang ◽  
Matthew H. Pelletier ◽  
Chris Christou ◽  
Rema Oliver ◽  
Ralph J. Mobbs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document