scholarly journals Niobium Carbide Loaded by Macrophage for Targeted Phototherapy Ablation of Breast Cancer

2020 ◽  
Author(s):  
Chiara Da Pieve ◽  
Gabriela Kramer Marek ◽  
Jolanta Saczko ◽  
Anant Shah ◽  
Florian Raes

ABSTRACTAltough nanomaterial-mediated phototherapy has been extensively studied, the major antitumor success is limited to treating subcutaneous tumor on nude, lacking of clinically-relevant big animal study. Therefore, it is urgent to make further investigation on the typical big model, which is more closely related to the human body. In this work, niobium carbide (NbC) was selected as photoactive substance in virtue of its outstanding near infrared (NIR) absorption properties and resultantly NIR-triggered hyperthemia and reactive oxygen species generation for the synergetic photothermal and photodynamic effect. Moreover, macrophage was used as bio-carrier for the targeted delivery of NbC and the phagocytosis of macrophages was proved to be able to retain the photothermal/photodynamic effect of NbC. Resultantly, macrophage loaded NbC could realize complete removal of solid tumor on both of nude mice and big animal of rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) have been applied for monitoring the physiological evolutions of in vivo tumor post treatment, which clearly disclosed the photoablation process of tumor and provided a new way for the surveillance of tumor on the big animal study. Hence, large animal model study in this work presented higher clinical significance than the previous studies.SignificanceFindings show that niobium carbide carried by macrophages can be used for targeted phototherapy. At the same time, we applied the rabbit tumor model which is closer to the human body microenvironment.

2021 ◽  
Author(s):  
Zhao Liu ◽  
Yuhang Tian ◽  
Shan Jiang ◽  
Haitao Shang ◽  
Kexin Chen ◽  
...  

Abstract BackgroundAlthough nanomaterial-mediated phototherapy has been extensively studied, the major antitumor success is limited to treating subcutaneous tumor on nude, lacking of clinically-relevant big animal study. Therefore, it is urgent to make further investigation on the typical big model, which is more closely related to the human body. ResultsIn this work, niobium carbide (NbC) is selected as photoactive substance in virtue of its outstanding near infrared (NIR) absorption properties and resultantly NIR-triggered hyperthemia and reactive oxygen species generation for the synergetic photothermal and photodynamic effect. Moreover, macrophage is used as bio-carrier for the targeted delivery of NbC and the phagocytosis of macrophages is proved to be able to retain the photothermal/photodynamic effect of NbC. Resultantly, macrophage loaded NbC could realize complete removal of solid tumor on both of nude mice and big animal of rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) have been applied for monitoring the physiological evolutions of in vivo tumor post treatment, which clearly disclose the photoablation process of tumor and provide a new way for the surveillance of tumor on the big animal study. ConclusionHence, large animal model study in this work presents higher clinical significance than the previous studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Li ◽  
Mohamad I. Itani ◽  
Kevan J. Salimian ◽  
Yue Li ◽  
Olaya Brewer Gutierrez ◽  
...  

AbstractGastrointestinal (GI) strictures are difficult to treat in a variety of disease processes. Currently, there are no Food and Drug Administration (FDA) approved drugs for fibrosis in the GI tract. One of the limitations to developing anti-fibrotic drugs has been the lack of a reproducible, relatively inexpensive, large animal model of fibrosis-driven luminal stricture. This study aimed to evaluate the feasibility of creating a model of luminal GI tract strictures. Argon plasma coagulation (APC) was applied circumferentially in porcine esophagi in vivo. Follow-up endoscopy (EGD) was performed at day 14 after the APC procedure. We noted high grade, benign esophageal strictures (n = 8). All 8 strictures resembled luminal GI fibrotic strictures in humans. These strictures were characterized, and then successfully dilated. A repeat EGD was performed at day 28 after the APC procedure and found evidence of recurrent, high grade, fibrotic, strictures at all 8 locations in all pigs. Pigs were sacrificed and gross and histologic analyses performed. Histologic examination showed extensive fibrosis, with significant collagen deposition in the lamina propria and submucosa, as well as extensive inflammatory infiltrates within the strictures. In conclusion, we report a porcine model of luminal GI fibrotic stricture that has the potential to assist with developing novel anti-fibrotic therapies as well as endoscopic techniques to address recurring fibrotic strictures in humans.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2571
Author(s):  
Cristina Prat-Vidal ◽  
Verónica Crisóstomo ◽  
Isabel Moscoso ◽  
Claudia Báez-Díaz ◽  
Virginia Blanco-Blázquez ◽  
...  

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.


2019 ◽  
Author(s):  
Alena Rudkouskaya ◽  
Nattawut Sinsuebphon ◽  
Marien Ochoa ◽  
Joe E. Mazurkiewicz ◽  
Xavier Intes ◽  
...  

AbstractFollowing an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. To date, non-invasive quantitative imaging modalities that can comprehensively assess simultaneous cellular drug delivery efficacy and therapeutic response are lacking. In this regard, Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in vivo and subsequent intracellular internalization, which is critical to assess the delivery efficacy of targeted therapeutics. However, implementation of multiplexing optical imaging with FRET in vivo is challenging to achieve due to spectral crowding and cross-contamination. Herein, we report on a strategy that relies on a dark quencher that enables simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700) using in vitro NIR FLI microscopy and in vivo wide-field MFLI imaging. Second, we report on simultaneous in vivo imaging of the metabolic probe IRDye 800CW 2-deoxyglucose (2-DG) and MFLI-FRET imaging of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.


2018 ◽  
Vol 18 (10) ◽  
pp. 1896-1909 ◽  
Author(s):  
Tian Wang ◽  
Matthew H. Pelletier ◽  
Chris Christou ◽  
Rema Oliver ◽  
Ralph J. Mobbs ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 356-364 ◽  
Author(s):  
RF Carter ◽  
AC Abrams-Ogg ◽  
JE Dick ◽  
SA Kruth ◽  
VE Valli ◽  
...  

Abstract Retroviral infection of bone marrow cells in long-term marrow cultures (LTMCs) offers several theoretical advantages over other methods for gene transfer into hematopoietic stem cells. To investigate the feasibility of this approach in a large animal model system, we subjected LTMCs from nine dogs to multiple infections with retrovirus containing the neomycin phosphotransferase gene (neo) during 21 days of culture. Feeder layers, cocultivation, polycations, and selection were not used. The in vitro gene transfer efficiency was 70% as determined by polymerase chain reaction amplification of neo sequences in colony- forming unit granulocyte-macrophage (CFU-GM) obtained from day-21 LTMCs. Day-21 LTMC cells were infused into autologous recipients with (four dogs) and without (three dogs) marrow-ablative conditioning. At 3 months posttransplant, up to 10% of marrow cells contained the neo gene. This percentage declined to 0.1% to 1% at 10 to 21 months posttransplant. Neo was also detected in individual CFU-GM, burst- forming unit-erythroid (BFU-E), and CFU-Mix progenitors derived from marrow up to 21 months postinfusion and in cultures of peripheral blood- derived T cells up to 19 months postinfusion. There was no difference in the percentage of neo-marked cells present when dogs that received marrow ablative conditioning were compared with dogs receiving no conditioning. Detection of neo-marked marrow cells almost 2 years after autologous transplantation in a large mammalian species shows that retroviral infection of marrow cells in LTMCs is a potentially nontoxic and efficient protocol for gene transfer. Further, our results suggest that marrow conditioning and in vivo selection pressure to retain transplanted cells may not be absolute requirements for the retention of genetically marked cells in vivo.


2020 ◽  
Vol 6 (3) ◽  
pp. eaay0065 ◽  
Author(s):  
Ritu Raman ◽  
Tiffany Hua ◽  
Declan Gwynne ◽  
Joy Collins ◽  
Siddartha Tamang ◽  
...  

Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. Here, we describe the development of a modular and tunable light-triggerable hydrogel system capable of interfacing with implantable devices. We apply these materials to two applications in the gastrointestinal (GI) tract: a bariatric balloon and an esophageal stent. We demonstrate biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Moreover, we characterize performance of the system in a porcine large animal model with an accompanying ingestible LED. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3682-3689 ◽  
Author(s):  
Paris Margaritis ◽  
Elise Roy ◽  
Majed N. Aljamali ◽  
Harre D. Downey ◽  
Urs Giger ◽  
...  

Abstract Continuous expression of activated factor VII (FVIIa) via gene transfer is a potential therapeutic approach for hemophilia patients with or without inhibitory antibodies to human factor VIII (FVIII) or IX (FIX). Here, we investigate whether gene transfer of an engineered canine FVIIa (cFVIIa) transgene can affect hemostasis in a canine model of hemophilia, a good predictor of efficacy of hemophilia treatments. Purified recombinant cFVIIa exhibited 12-fold higher tissue factor–dependent activity than purified recombinant zymogen cFVII. Subsequently, we generated a serotype 8 recombinant adeno-associated viral vector expressing cFVIIa from a liver-specific promoter. Vector delivery via the portal vein in hemophilia A and B dogs was well tolerated, and long-term expression of cFVIIa resulted in a shortening of the prothrombin time, partial correction of the whole blood clotting time and thromboelastography parameters, and a complete absence of spontaneous bleeding episodes. No evidence of hepatotoxicity, thrombotic complications, or inhibitory immune response was found. These data provide the first evidence for in vivo efficacy and safety of continuously expressed FVIIa as a FVIII/FIX-bypassing agent in a large animal model of hemophilia, avoiding the risk of inhibitor formation associated with bolus FVIII or FIX infusion.


Sign in / Sign up

Export Citation Format

Share Document