scholarly journals Effort Perception is Made More Accurate with More Effort and When Cooperating with Slackers

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Paul Ibbotson ◽  
Christoph Hauert ◽  
Richard Walker

AbstractRecent research on the conditions that facilitate cooperation is limited by a factor that has yet to be established: the accuracy of effort perception. Accuracy matters because the fitness of cooperative strategies depends not just on being able to perceive others’ effort but to perceive their true effort. In an experiment using a novel effort-tracker methodology, we calculate the accuracy of human effort perceptions and show that accuracy is boosted by more absolute effort (regardless of relative effort) and when cooperating with a “slacker” rather than an “altruist”. A formal model shows how such an effort-prober strategy is likely to be an adaptive solution because it gives would-be collaborators information on when to abort ventures that are not in their interest and opt for ones that are. This serves as a precautionary measure against systematic exploitation by extortionist strategies and a descent into uncooperativeness. As such, it is likely that humans have a bias to minimize mistakes in effort perception that would commit them to a disadvantageous effort-reward relationship. Overall we find support for the idea that humans have evolved smart effort detection systems that are made more accurate by those contexts most relevant for cooperative tasks.

2022 ◽  
Vol 16 (1) ◽  
pp. 54
Author(s):  
Imam Husni Al amin ◽  
Awan Aprilino

Currently, vehicle number plate detection systems in general still use the manual method. This will take a lot of time and human effort. Thus, an automatic vehicle number plate detection system is needed because the number of vehicles that continues to increase will burden human labor. In addition, the methods used for vehicle number plate detection still have low accuracy because they depend on the characteristics of the object being used. This study develops a YOLO-based automatic vehicle number plate detection system. The dataset used is a pretrained YOLOv3 model of 700 data. Then proceed with the number plate text extraction process using the Tesseract Optical Character Recognition (OCR) library and the results obtained will be stored in the database. This system is web-based and API so that it can be used online and on the cross-platform. The test results show that the automatic number plate detection system reaches 100% accuracy with sufficient lighting and a threshold of 0.5 and for the results using the Tesseract library, the detection results are 92.32% where the system is successful in recognizing all characters on the license plates of cars and motorcycles. in the form of Alphanumeric characters of 7-8 characters.


2018 ◽  
pp. 40-44
Author(s):  
Arina Nikishova ◽  
Svetlana Mikhalchenko

According to statistics, the number of samples of new attacks against information systems is increasing due to inability to detect new patterns and the lack of modern attack detection systems. To resolve this issue, we implement intelligent data analysis to detect attacks. There are many data mining programs, so it is important to choose the best program. The authors investigate the problem of information security from the viewpoint of new attacks, the programs for mining of information system’s events. The criteria for their evaluation have been formulated. Besides, the formal model for the study of programs for mining of information system’s events has been developed. The proposed formal model will help to choose the best program for event mining. If the requirements for the analyzed programs change, then changing the values in the best vector can also become a right solution. Thus, the developed formal evaluation model is universal and effective.


Author(s):  
A. V. Crewe

If the resolving power of a scanning electron microscope can be improved until it is comparable to that of a conventional microscope, it would serve as a valuable additional tool in many investigations.The salient feature of scanning microscopes is that the image-forming process takes place before the electrons strike the specimen. This means that several different detection systems can be employed in order to present information about the specimen. In our own particular work we have concentrated on the use of energy loss information in the beam which is transmitted through the specimen, but there are also numerous other possibilities (such as secondary emission, generation of X-rays, and cathode luminescence).Another difference between the pictures one would obtain from the scanning microscope and those obtained from a conventional microscope is that the diffraction phenomena are totally different. The only diffraction phenomena which would be seen in the scanning microscope are those which exist in the beam itself, and not those produced by the specimen.


Author(s):  
G.D. Danilatos

The environmental scanning electron microscope (ESEM) has evolved as the natural extension of the scanning electron microscope (SEM), both historically and technologically. ESEM allows the introduction of a gaseous environment in the specimen chamber, whereas SEM operates in vacuum. One of the detection systems in ESEM, namely, the gaseous detection device (GDD) is based on the presence of gas as a detection medium. This might be interpreted as a necessary condition for the ESEM to remain operational and, hence, one might have to change instruments for operation at low or high vacuum. Initially, we may maintain the presence of a conventional secondary electron (E-T) detector in a "stand-by" position to switch on when the vacuum becomes satisfactory for its operation. However, the "rough" or "low vacuum" range of pressure may still be considered as inaccessible by both the GDD and the E-T detector, because the former has presumably very small gain and the latter still breaks down.


Sign in / Sign up

Export Citation Format

Share Document