scholarly journals Egg parasitoid exploitation of plant volatiles induced by single or concurrent attack of a zoophytophagous predator and an invasive phytophagous pest

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Letizia Martorana ◽  
Jacques Brodeur ◽  
Maria Cristina Foti ◽  
Alfonso Agrò ◽  
Stefano Colazza ◽  
...  

AbstractZoophytophagous insect predators can induce physiological responses in plants by activating defence signalling pathways, but whether plants can respond to facultative phytophagy by recruiting natural enemies remains to be investigated. In Y-tube olfactometer bioassays, using a system including a Vicia faba plant, the zoophytophagous predator Podisus maculiventris and the egg parasitoid Telenomus podisi, we first demonstrated that T. podisi females are attracted by broad bean plants damaged by feeding activity of P. maculiventris and on which host egg masses had been laid, while they are not attracted by undamaged plants or plants damaged by feeding activity alone. In a second experiment, we evaluated the impact of the invasive phytophagous pest Halyomorpha halys on this plant volatile-mediated tritrophic communication. Results showed that the invasive herbivorous adults do not induce plants to recruit the native egg parasitoid, but they can disrupt the local infochemical network. In fact, T. podisi females are not attracted by volatiles emitted by plants damaged by H. halys feeding alone or combined with oviposition activity, nor are they attracted by plants concurrently infested by P. maculiventris and H. halys, indicating the specificity in the parasitoid response and the ability of the invasive herbivore in interrupting the semiochemical communication between plants and native egg parasitoids. To the best of our knowledge, this is the first study showing that zoophytophagous predator attacks induce indirect plant defences similarly to those defence strategies adopted by plants as a consequence of single or concurrent infestations of herbivorous insects.

2014 ◽  
Vol 104 (6) ◽  
pp. 781-787 ◽  
Author(s):  
R. Tognon ◽  
J. Sant'Ana ◽  
S.M. Jahnke

AbstractThe egg parasitoid Telenomus podisi is a natural control agent of pentatomids, including Euschistus heros and Tibraca limbativentris, and success of parasitism is dependent upon the parasitoid finding the host. We tested the influence of host egg volatiles and the synthetic sex pheromone (zingiberenol) of T. limbativentris on chemotaxic behaviour of T. podisi, as well as, the impact of the original host on parasitoid selection. We used mated female T. podisi (48 h old) that emerged from the eggs of T. limbativentris or E. heros. The bioassays related to chemotaxy were performed in a Y-tube olfactometer and, to parasitism success, in laboratory and semi-field conditions. Telenomus podisi females that emerged from either the stink bug eggs, chose the pheromone more than control, or the pheromone plus eggs of E. heros in the semi-field bioassay, led to greater parasitism. Females that emerged from E. heros eggs chose egg volatiles from their original host rather than those from T. limbativentris, while females emerging from T. limbativentris, chose the egg volatiles of both hosts equally. When T. limbativentris was the original host, T. podisi females parasitized T. limbativentris over E. heros, while those emerging from E. heros exclusively parasitized E. heros eggs. These results demonstrated that T. podisi is more likely to parasitize the host in which it developed and that the original host can exert influence on the choice by those parasitoids. Understanding how the factors that mediate host–parasitoid communication are interrelated can help biological control programmes establish more effective and reliable tools with T. podisi.


Author(s):  
Ajeng Embri Legawati ◽  
Nur Azizah ◽  
Achmad Ramadhan

Green beans cultivation technology using mice pets control has been implemented in the Gluranploso village, Benjeng Gresik. The implementation of the technology performed for 2.5 months from August to October 2017. The purpose of the implementation is aimed to reduce the dependence of farmers on the use of chemical pesticides so that the farmers are aware of the negative impact of chemical pesticides. Assessing the impact of the utilization of Bintaro fruit and fruit extracts to explore ways of making Bintaro as a natural biopesticide to overcome rat attack on green bean plants in the Gluranploso village. Pest control mice can reduce the rate of loss of the crops more effectively and efficiently. Finally, with the use of those natural resources as a biopesticide material can also maintain the environmental balance


Biologia ◽  
2014 ◽  
Vol 69 (8) ◽  
Author(s):  
Georgia Ouzounidou ◽  
Ilias Ilias ◽  
Anastasia Giannakoula ◽  
Ioanna Theoharidou

AbstractSalinity and drought are the most important abiotic stresses affecting crop yield. Broad bean was chosen as model plant for assessing the impact of salt stress and its interaction with drought in the field experiments. The factors examined in the experiments were the two irrigation rates (normal watering — NW with 3 L plant−1 and drought — D) and three salinity rates imposed by foliar application (0, 50, 100 mg L−1 NaCl). Highest NaCl level with normal water irrigation caused maximum reduction in plant height and production, which it was due to photosynthetic disturbances. Salt injuries were alleviated by increasing water stress. The control plants exposed to NaCl lost their ability over water control. The increased malondialdehyde (MDA) and H2O2 indicate the prevalence of oxidative stress due to salinity. The levels of proline and carbohydrates were higher under salinity alone than under simultaneous exposure to drought and NaCl. The protein concentration of immature and mature broad bean pods was more inhibited more by NaCl supply than by drought alone. The combination of drought and NaCl resulted in a significant increase in proteins, glucose, fructose and sucrose content. Overall, the ameliorative effect of drought under NaCl supply was quantified.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Martin M. Gossner ◽  
Ludwig Beenken ◽  
Kirstin Arend ◽  
Dominik Begerow ◽  
Derek Peršoh

AbstractPlants can be severely affected by insect herbivores and phytopathogenic fungi, but interactions between these plant antagonists are poorly understood. We analysed the impact of feeding damage by the abundant herbivore Orchestes fagi on infection rates of beech (Fagus sylvatica) leaves with Petrakia liobae, an invasive plant pathogenic fungus. The fungus was not detected in hibernating beetles, indicating that O. fagi does not serve as vector for P. liobae, at least not between growing seasons. Abundance of the fungus in beech leaves increased with feeding damage of the beetle and this relationship was stronger for sun-exposed than for shaded leaves. A laboratory experiment revealed sun-exposed leaves to have thicker cell walls and to be more resistant to pathogen infection than shaded leaves. Mechanical damage significantly increased frequency and size of necroses in the sun, but not in shade leaves. Our findings indicate that feeding damage of adult beetles provides entry ports for fungal colonization by removal of physical barriers and thus promotes infection success by pathogenic fungi. Feeding activity by larvae probably provides additional nutrient sources or eases access to substrates for the necrotrophic fungus. Our study exemplifies that invasive pathogens may benefit from herbivore activity, which may challenge forest health in light of climate change.


1992 ◽  
Vol 4 (1) ◽  
pp. 37-43 ◽  
Author(s):  
M. RABIE ◽  
M. ELEIWA ◽  
M. ABOSEOUD ◽  
K. KHALIL
Keyword(s):  

Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 413
Author(s):  
Hanna R. McIntosh ◽  
Victoria P. Skillman ◽  
Gracie Galindo ◽  
Jana C. Lee

The egg parasitoid Trissolcus japonicus is the main candidate for classical biocontrol of the invasive agricultural pest Halyomorpha halys. The efficacy of classical biocontrol depends on the parasitoid’s survival and conservation in the agroecosystem. Most parasitoid species rely on floral nectar as a food source, thus identifying nectar sources for T. japonicus is critical. We evaluated the impact of eight flowering plant species on T. japonicus survival in the lab by exposing unfed wasps to flowers inside vials. We also measured the wasps’ nutrient levels to confirm feeding and energy storage using anthrone and vanillin assays adapted for T. japonicus. Buckwheat, cilantro, and dill provided the best nectar sources for T. japonicus by improving median survival by 15, 3.5, and 17.5 days compared to water. These three nectar sources increased wasps’ sugar levels, and cilantro and dill also increased glycogen levels. Sweet alyssum, marigold, crimson clover, yellow mustard, and phacelia did not improve wasp survival or nutrient reserves. Further research is needed to determine if these flowers maintain their benefits in the field and whether they will increase the parasitism rate of H. halys.


2009 ◽  
Vol 15 (4) ◽  
pp. 287 ◽  
Author(s):  
Bradley S. Law ◽  
Mark Chidel

Nectar in tall forest canopies is a significant, but poorly quantified, resource for Australian fauna, as well as the European Honeybee Apis mellifera. We investigated the impact of logging on nectar production in the canopy of Grey Ironbark Eucalyptus paniculata (Smith) forests in southern Australia. Using cherry-pickers and cranes we measured nectar production in large and small trees in replicate sites in each of recently logged, young regrowth and old regrowth forest over three consecutive years (2004?2006). We focused on over-night nectar production, although nectar was produced during both the day and night. Logging history and tree size, when considered individually, had no significant effect on nectar production per flower, although the two factors showed a significant interaction. However, these differences were relatively minor in comparison to the negative relationship with drought. Little nectar was produced per flower under any logging history in drought. During good conditions nectar production varied depending on logging history. When scaled up to the forest stand, logging history had a marked effect on nectar production with old regrowth forest producing seven times as much sugar per ha as recently logged forest. Young regrowth forest 15?20 years old produced nectar quantities intermediate between that of recently logged forest and regrowth forest. At the compartment scale, current practices require the retention of old forest and the typical extent of this retention reduced the difference between old regrowth forest and recently logged forest to a factor of two times. Nectar production per flower was low and a limited resource in autumn 2004 and late-winter 2005, but was copious and in surplus in early summer 2006. Nectar standing crops at the flower scale appeared to be determined by an interaction between environmental conditions (drought) that negatively influenced nectar production and the feeding activity of flower visitors at the time, which itself is affected by prevailing temperatures and nectar attributes, such as sugar concentration and regional nectar availability. We suggest that management actions should focus on minimising nectar depletion in poor flowering years when the nectar resource is limiting.


2020 ◽  
Author(s):  
Hyun Gi Kong ◽  
Geun Cheol Song ◽  
Hee-Jung Sim ◽  
Choong-Min Ryu

Abstract The ability to recognize and respond to environmental signals is essential for plants. In response to environmental changes, the status of a plant is transmitted to other plants in the form of signals such as volatiles. Root-associated bacteria trigger the release of plant volatile organic compounds (VOCs). However, the impact of VOCs on the rhizosphere microbial community of neighbouring plants is not well understood. Here, we investigated the effect of VOCs on the rhizosphere microbial community of tomato plants inoculated with a plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain GB03 and that of their neighbouring plants. Interestingly, high similarity (up to 69%) was detected in the rhizosphere microbial communities of the inoculated and neighbouring plants. Leaves of the tomato plant treated with strain GB03-released β-caryophyllene as a signature VOC, which elicited the release of a large amount of salicylic acid (SA) in the root exudates of a neighbouring tomato seedling. The exposure of tomato leaves to β-caryophyllene resulted in the secretion of SA from the root. Our results demonstrate for the first time that the composition of the rhizosphere microbiota in surrounding plants is synchronized through aerial signals from plants.


Sign in / Sign up

Export Citation Format

Share Document