scholarly journals Silver vacancy concentration engineering leading to the ultralow lattice thermal conductivity and improved thermoelectric performance of Ag1-xInTe2

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaqiong Zhong ◽  
Yong Luo ◽  
Xie Li ◽  
Jiaolin Cui

AbstractAgInTe2 compound has not received enough recognition in thermoelectrics, possibly due to the fact that the presence of Te vacancy (VTe) and antisite defect of In at Ag site (InAg) degrades its electrical conductivity. In this work, we prepared the Ag1-xInTe2 compounds with substoichiometric amounts of Ag and observed an ultralow lattice thermal conductivity (κL = 0.1 Wm−1K−1) for the sample at x = 0.15 and 814 K. This leads to more than 2-fold enhancement in the ZT value (ZT = 0.62) compared to the pristine AgInTe2. In addition, we have traced the origin of the untralow κL using the Callaway model. The results attained in this work suggest that the engineering of the silver vacancy (VAg) concentration is still an effective way to manipulate the thermoelectric performance of AgInTe2, realized by the increased point defects and modified crystal structure distortion as the VAg concentration increases.

RSC Advances ◽  
2019 ◽  
Vol 9 (54) ◽  
pp. 31747-31752 ◽  
Author(s):  
Min Li ◽  
Yong Luo ◽  
Xiaojuan Hu ◽  
Zhongkang Han ◽  
Xianglian Liu ◽  
...  

Co-regulation of both the copper vacancy concentration (Vc) and point defect GaIn realizing the high carrier concentration and low lattice thermal conductivity in Cu3In5Te9-based chalcogenides simultaneously.


2016 ◽  
Vol 3 (9) ◽  
pp. 1167-1177 ◽  
Author(s):  
Ruiheng Liu ◽  
Yuting Qin ◽  
Nian Cheng ◽  
Jiawei Zhang ◽  
Xun Shi ◽  
...  

In a tetragonal chalcopyrite solid solution Cu1−xAgxInTe2 (x = 0–0.5), a pseudocubic structure is realized at x ≈ 0.2. The degenerate valence bands influence electrical transport and lattice thermal conductivity. The highest ZT of 1.24 was obtained at x = 0.2 and δ = 0.05.


2021 ◽  
pp. 2150089
Author(s):  
THAMMANOON KAPANYA ◽  
BINBIN JIANG ◽  
JIAQING HE ◽  
YANG QIU ◽  
CHANCHANA THANACHAYANONT ◽  
...  

The efficient strategies to minimize thermal conductivity in skutterudite materials are creating point defects along with nanosized grains. In this report, Sn and Se co-doped CoSb3 materials were synthesized through mixed-ball milling and spark plasma sintering techniques to utilize this strategy. Their phases, microstructure and thermoelectric properties were investigated under the content variation of Sn and Se in CoSb3 samples. The experimental results revealed that the Sn and Se were substituted at Sb sites in CoSb3 crystal structure and grain sizes were restricted to a hundred nanometer. The lattice thermal conductivity was reduced to 2.4[Formula: see text]W/mK at 298K. Interestingly, increasing Sn and Se doped content could further minimize the lattice thermal conductivity. The lowest value at room temperature is 1.79[Formula: see text]W/mK for CoSb[Formula: see text]Sn[Formula: see text]Se[Formula: see text] which was dramatically lower than pure CoSb3. Moreover, the increment of Sn and Se content also increased the electrical conductivity of doped samples, while the negative Seebeck coefficient sign tended to decrease. As expected, low electrical conductivity and substantial reduction in the Seebeck coefficient of doped samples at high measurement temperature, resulting in low power factor and low ZT values. It was clearly seen that the highest power factor of 880[Formula: see text][Formula: see text]W/mK2 was found at 516[Formula: see text]K in CoSb[Formula: see text]Sn[Formula: see text]Se[Formula: see text]. Furthermore, it also dominated the highest ZT value of 0.29 at 565 K, compared to the other Sn and Se co-doped samples. From these results, ball milling under dry conditions followed by wet conditions not only allowed a longer milling process but also generated a small fraction of pore which was a part of the reduction in thermal conductivity. Especially, the advantage of the existence of Sn and Se point defects and nanosized grains from this work will be escalated when it was applied to prepare materials that have high power factor values.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


Author(s):  
Zihang Liu ◽  
Wenhao Zhang ◽  
Weihong Gao ◽  
Takao Mori

Discovering materials with the intrinsically low lattice thermal conductivity κlat is an important route for achieving high thermoelectric performance. In reality, the conventional synthetic approach, however, relies on trial and...


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document