scholarly journals Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Lorente ◽  
K. F. Boersma ◽  
H. J. Eskes ◽  
J. P. Veefkind ◽  
J. H. G. M. van Geffen ◽  
...  

AbstractNitrogen dioxide (NO2) is a regulated air pollutant that is of particular concern in many cities, where concentrations are high. Emissions of nitrogen oxides to the atmosphere lead to the formation of ozone and particulate matter, with adverse impacts on human health and ecosystems. The effects of emissions are often assessed through modeling based on inventories relying on indirect information that is often outdated or incomplete. Here we show that NO2 measurements from the new, high-resolution TROPOMI satellite sensor can directly determine the strength and distribution of emissions from Paris. From the observed build-up of NO2 pollution, we find highest emissions on cold weekdays in February 2018, and lowest emissions on warm weekend days in spring 2018. The new measurements provide information on the spatio-temporal distribution of emissions within a large city, and suggest that Paris emissions in 2018 are only 5–15% below inventory estimates for 2011–2012, reflecting the difficulty of meeting NOx emission reduction targets.

2019 ◽  
Vol 65 (252) ◽  
pp. 617-632 ◽  
Author(s):  
JAKOB F. STEINER ◽  
PASCAL BURI ◽  
EVAN S. MILES ◽  
SILVAN RAGETTLI ◽  
FRANCESCA PELLICCIOTTI

ABSTRACTIce cliffs and ponds on debris-covered glaciers have received increased attention due to their role in amplifying local melt. However, very few studies have looked at these features on the catchment scale to determine their patterns and changes in space and time. We have compiled a detailed inventory of cliffs and ponds in the Langtang catchment, central Himalaya, from six high-resolution satellite orthoimages and DEMs between 2006 and 2015, and a historic orthophoto from 1974. Cliffs cover between 1.4% (± 0.4%) in the dry and 3.4% (± 0.9%) in the wet seasons and ponds between 0.6% (± 0.1%) and 1.6% (± 0.3%) of the total debris-covered tongues. We find large variations between seasons, as cliffs and ponds tend to grow in the wetter monsoon period, but there is no obvious trend in total area over the study period. The inventory further shows that cliffs are predominately north-facing irrespective of the glacier flow direction. Both cliffs and ponds appear in higher densities several hundred metres from the terminus in areas where tributaries reach the main glacier tongue. On the largest glacier in the catchment ~10% of all cliffs and ponds persisted over nearly a decade.


2019 ◽  
Vol 76 (6) ◽  
pp. 1666-1677 ◽  
Author(s):  
Irina I Rypina ◽  
Ke Chen ◽  
Christina M Hernández ◽  
Lawrence J Pratt ◽  
Joel K Llopiz

Abstract Motivated by recent evidence of Atlantic bluefin tuna spawning in the Slope Sea, we investigated the spatio-temporal distribution of oceanographic conditions that are conducive to successful spawning by bluefin in this region. Specifically, we considered advection patterns and water temperatures based on a new high-resolution ocean circulation model. After validating model velocities and temperatures using observations, three criteria were used to evaluate the success of simulated bluefin spawning during 2013: water temperature at spawning locations, mean water temperature along larval trajectories, and larval residence time within the Slope Sea. Analyses of satellite-based, decade-long (2008–2017) datasets suggest that conditions, specifically water temperatures and advection patterns, in the Slope Sea in 2013 were representative of typical years. The temperature criteria are more frequently satisfied in the southern and southwestern parts of the domain, whereas the residence time criterion favors more northern areas further from the Gulf Stream. The probability map of successful spawning locations shows a maximum near the northwestern bight of the Slope Sea. Spawning success is near-zero through most of June, increases in July, and peaks in early-to-mid August. Overall, water temperatures and retentive capabilities suggest that the Slope Sea provided suitable conditions for successful spawning of bluefin during 2013.


2013 ◽  
Vol 38 (7) ◽  
pp. 1286-1294 ◽  
Author(s):  
Zong-Xin LI ◽  
Yuan-Quan CHEN ◽  
Qing-Cheng WANG ◽  
Kai-Chang LIU ◽  
Wang-Sheng GAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document