scholarly journals An efficient microinjection method to generate human anaplasmosis agent Anaplasma phagocytophilum-infected ticks

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikas Taank ◽  
Ellango Ramasamy ◽  
Hameeda Sultana ◽  
Girish Neelakanta

Abstract Ticks are important vectors that transmit several pathogens including human anaplasmosis agent, Anaplasma phagocytophilum. This bacterium is an obligate intracellular rickettsial pathogen. An infected reservoir animal host is often required for maintenance of this bacterial colony and as a source for blood to perform needle inoculations in naïve animals for tick feeding studies. In this study, we report an efficient microinjection method to generate A. phagocytophilum-infected ticks in laboratory conditions. The dense-core (DC) form of A. phagocytophilum was isolated from in vitro cultures and injected into the anal pore of unfed uninfected Ixodes scapularis nymphal ticks. These ticks successfully transmitted A. phagocytophilum to the murine host. The bacterial loads were detected in murine blood, spleen, and liver tissues. In addition, larval ticks successfully acquired A. phagocytophilum from mice that were previously infected by feeding with DC-microinjected nymphal ticks. Transstadial transmission of A. phagocytophilum from larvae to nymphal stage was also evident in these ticks. Taken together, our study provides a timely, rapid, and an efficient method not only to generate A. phagocytophilum-infected ticks but also provides a tool to understand acquisition and transmission dynamics of this bacterium and perhaps other rickettsial pathogens from medically important vectors.

2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Francy L. Crosby ◽  
Ulrike G. Munderloh ◽  
Curtis M. Nelson ◽  
Michael J. Herron ◽  
Anna M. Lundgren ◽  
...  

ABSTRACT Many pathogenic bacteria translocate virulence factors into their eukaryotic hosts by means of type IV secretion systems (T4SS) spanning the inner and outer membranes. Genes encoding components of these systems have been identified within the order Rickettsiales based upon their sequence similarities to other prototypical systems. Anaplasma phagocytophilum strains are obligate intracellular, tick-borne bacteria that are members of this order. The organization of these components at the genomic level was determined in several Anaplasma phagocytophilum strains, showing overall conservation, with the exceptions of the virB2 and virB6 genes. The virB6 loci are characterized by the presence of four virB6 copies (virB6-1 through virB6-4) arranged in tandem within a gene cluster known as the sodB-virB operon. Interestingly, the virB6-4 gene varies significantly in length among different strains due to extensive tandem repeats at the 3′ end. To gain an understanding of how these enigmatic virB6 genes function in A. phagocytophilum, we investigated their expression in infected human and tick cells. Our results show that these genes are expressed by A. phagocytophilum replicating in both cell types and that VirB6-3 and VirB6-4 proteins are surface exposed. Analysis of an A. phagocytophilum mutant carrying the Himar1 transposon within the virB6-4 gene demonstrated that the insertion not only disrupted its expression but also exerted a polar effect on the sodB-virB operon. Moreover, the altered expression of genes within this operon was associated with the attenuated in vitro growth of A. phagocytophilum in human and tick cells, indicating the importance of these genes in the physiology of this obligate intracellular bacterium in such different environments. IMPORTANCE Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens. The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1>) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library.


2006 ◽  
Vol 203 (6) ◽  
pp. 1507-1517 ◽  
Author(s):  
Bindu Sukumaran ◽  
Sukanya Narasimhan ◽  
John F. Anderson ◽  
Kathleen DePonte ◽  
Nancy Marcantonio ◽  
...  

Anaplasma phagocytophilum is the agent of human anaplasmosis, the second most common tick-borne illness in the United States. This pathogen, which is closely related to obligate intracellular organisms in the genera Rickettsia, Ehrlichia, and Anaplasma, persists in ticks and mammalian hosts; however, the mechanisms for survival in the arthropod are not known. We now show that A. phagocytophilum induces expression of the Ixodes scapularis salp16 gene in the arthropod salivary glands during vector engorgement. RNA interference–mediated silencing of salp16 gene expression interfered with the survival of A. phagocytophilum that entered ticks fed on A. phagocytophilum–infected mice. A. phagocytophilum migrated normally from A. phagocytophilum–infected mice to the gut of engorging salp16-deficient ticks, but up to 90% of the bacteria that entered the ticks were not able to successfully infect I. scapularis salivary glands. These data demonstrate the specific requirement of a pathogen for a tick salivary protein to persist within the arthropod and provide a paradigm for understanding how Rickettsia-like pathogens are maintained within vectors.


2009 ◽  
Vol 77 (6) ◽  
pp. 2320-2329 ◽  
Author(s):  
Xiuyang Guo ◽  
Carmen J. Booth ◽  
Michael A. Paley ◽  
Xiaomei Wang ◽  
Kathleen DePonte ◽  
...  

ABSTRACT The saliva of hematophagous arthropods contains potent anti-inflammatory and antihemostatic activities that promote acquisition of the blood meal and enhance infection with pathogens. We have shown that polymorphonuclear leukocytes (PMN) treated with the saliva of the tick Ixodes scapularis have reduced expression of β2 integrins, impaired PMN adherence, and reduced killing of Borrelia burgdorferi, the causative agent of Lyme disease. Here we describe two Ixodes proteins that are induced upon tick feeding and expressed predominantly in the salivary glands. Using saliva harvested from ticks with reduced levels of ISL 929 and ISL 1373 through targeted RNA interference knockdown, as well as purified recombinant proteins, we show the effects of these proteins on downregulation of PMN integrins and inhibition of the production of O2 − by PMN in vitro. Mice immunized with ISL 929/1373 had increased numbers of PMN at the site of tick attachment and a lower spirochete burden in the skin and joints 21 days after infection compared to control-immunized animals. Our results suggest that ISL 929 and ISL 1373 contribute to the inhibition of PMN functions shown previously with tick saliva and support important roles for these inhibitory proteins in the modulation of PMN function in vivo.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
K Sykłowska-Baranek ◽  
A Pietrosiuk ◽  
M Grech-Baran ◽  
M Bonfill ◽  
P Mistrzak

Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
K Sykłowska-Baranek ◽  
A Pietrosiuk ◽  
K Graikou ◽  
H Damianakos ◽  
M Jeziorek ◽  
...  

2008 ◽  
Vol 21 (2) ◽  
pp. 103-106 ◽  
Author(s):  
Barbara Sparzak ◽  
Mirosława Krauze-Baranowska ◽  
Loretta Pobłocka-Olech
Keyword(s):  

2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


Sign in / Sign up

Export Citation Format

Share Document