scholarly journals Cell shape regulates subcellular organelle location to control early Ca2+ signal dynamics in vascular smooth muscle cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. C. Calizo ◽  
M. K. Bell ◽  
A. Ron ◽  
M. Hu ◽  
S. Bhattacharya ◽  
...  

Abstract The shape of the cell is connected to its function; however, we do not fully understand underlying mechanisms by which global shape regulates a cell’s functional capabilities. Using theory, experiments and simulation, we investigated how physiologically relevant cell shape changes affect subcellular organization, and consequently intracellular signaling, to control information flow needed for phenotypic function. Vascular smooth muscle cells going from a proliferative and motile circular shape to a contractile fusiform shape show changes in the location of the sarcoplasmic reticulum, inter-organelle distances, and differential distribution of receptors in the plasma membrane. These factors together lead to the modulation of signals transduced by the M3 muscarinic receptor/Gq/PLCβ pathway at the plasma membrane, amplifying Ca2+ dynamics in the cytoplasm, and the nucleus resulting in phenotypic changes, as determined by increased activity of myosin light chain kinase in the cytoplasm and enhanced nuclear localization of the transcription factor NFAT. Taken together, our observations show a systems level phenomenon whereby global cell shape affects subcellular organization to modulate signaling that enables phenotypic changes.

2017 ◽  
Author(s):  
R. C. Calizo ◽  
M. K. Bell ◽  
A. Ron ◽  
M. Hu ◽  
S. Bhattacharya ◽  
...  

ABSTRACTThe shape of the cell is connected to its function; however, we do not fully understand underlying mechanisms by which global shape regulates a cell’s functional capabilities. Using theory, experiments and simulation, we investigated how physiologically relevant cell shape changes affect subcellular organization, and consequently intracellular signaling, to control information flow needed for phenotypic function. Vascular smooth muscle cells going from a proliferative and motile circular shape to a contractile fusiform shape show changes in the location of the sarcoplasmic reticulum, inter-organelle distances and differential distribution of receptors in the plasma membrane. These factors together lead to the modulation of signals transduced by the M3 muscarinic receptor/Gq/PLCβ pathway at the plasma membrane, amplifying Ca2+ dynamics in the cytoplasm and the nucleus resulting in phenotypic changes, as determined by increased activity of myosin light chain kinase in the cytoplasm and enhanced nuclear localization of the transcription factor NFAT. Taken together, our observations show a systems level phenomenon whereby global cell shape affects subcellular organization to modulate signaling that enables phenotypic changes.


2019 ◽  
Vol 33 (9) ◽  
pp. 9785-9796 ◽  
Author(s):  
Takuro Numaga‐Tomita ◽  
Tsukasa Shimauchi ◽  
Sayaka Oda ◽  
Tomohiro Tanaka ◽  
Kazuhiro Nishiyama ◽  
...  

Author(s):  
Duong Ngoc Diem Nguyen ◽  
William M Chilian ◽  
Shamsul Mohd Zain ◽  
Muhammad Fauzi Daud ◽  
Yuh Fen Pung

Cardiovascular disease (CVD) is among the leading causes of death worldwide. Micro-RNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs was also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages were discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression and/or miRNA-derived therapeutic approaches in CVD research.


2009 ◽  
Vol 423 (3) ◽  
pp. 343-351 ◽  
Author(s):  
Julia Kiyan ◽  
Graham Smith ◽  
Hermann Haller ◽  
Inna Dumler

The cholesterol-enriched membrane microdomains lipid rafts play a key role in cell activation by recruiting and excluding specific signalling components of cell-surface receptors upon receptor engagement. Our previous studies have demonstrated that the GPI (glycosylphosphatidylinositol)-linked uPAR [uPA (urokinase-type plasminogen activator) receptor], which can be found in lipid rafts and in non-raft fractions, can mediate the differentiation of VSMCs (vascular smooth muscle cells) towards a pathophysiological de-differentiated phenotype. However, the mechanism by which uPAR and its ligand uPA regulate VSMC phenotypic changes is not known. In the present study, we provide evidence that the molecular machinery of uPAR-mediated VSMC differentiation employs lipid rafts. We show that the disruption of rafts in VSMCs by membrane cholesterol depletion using MCD (methyl-β-cyclodextrin) or filipin leads to the up-regulation of uPAR and cell de-differentiation. uPAR silencing by means of interfering RNA resulted in an increased expression of contractile proteins. Consequently, disruption of lipid rafts impaired the expression of these proteins and transcriptional activity of related genes. We provide evidence that this effect was mediated by uPAR. Similar effects were observed in VSMCs isolated from Cav1−/− (caveolin-1-deficient) mice. Despite the level of uPAR being significantly higher after the disruption of the rafts, uPA/uPAR-dependent cell migration was impaired. However, caveolin-1 deficiency impaired only uPAR-dependent cell proliferation, whereas cell migration was strongly up-regulated in these cells. Our results provide evidence that rafts are required in the regulation of uPAR-mediated VSMC phenotypic modulations. These findings suggest further that, in the context of uPA/uPAR-dependent processes, caveolae-associated and non-associated rafts represent different signalling membrane domains.


1999 ◽  
Vol 274 (52) ◽  
pp. 36843-36851 ◽  
Author(s):  
Satoru Eguchi ◽  
Hiroaki Iwasaki ◽  
Hikaru Ueno ◽  
Gerald D. Frank ◽  
Evangeline D. Motley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document