scholarly journals Quantum phase transitions in nonhermitian harmonic oscillator

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Miloslav Znojil

Abstract The Stone theorem requires that in a physical Hilbert space $${{{\mathcal {H}}}}$$ H the time-evolution of a stable quantum system is unitary if and only if the corresponding Hamiltonian H is self-adjoint. Sometimes, a simpler picture of the evolution may be constructed in a manifestly unphysical Hilbert space $${{{\mathcal {K}}}}$$ K in which H is nonhermitian but $${{\mathcal {PT}}}$$ PT -symmetric. In applications, unfortunately, one only rarely succeeds in circumventing the key technical obstacle which lies in the necessary reconstruction of the physical Hilbert space $${{{\mathcal {H}}}}$$ H . For a $${{\mathcal {PT}}}$$ PT -symmetric version of the spiked harmonic oscillator we show that in the dynamical regime of the unavoided level crossings such a reconstruction of $${{{\mathcal {H}}}}$$ H becomes feasible and, moreover, obtainable by non-numerical means. The general form of such a reconstruction of $${{{\mathcal {H}}}}$$ H enables one to render every exceptional unavoided-crossing point tractable as a genuine, phenomenologically most appealing quantum-phase-transition instant.

2010 ◽  
Vol 24 (12n13) ◽  
pp. 1823-1840 ◽  
Author(s):  
Sudip Chakravarty

Extensive body of work has shown that for the model of a non-interacting electron in a random potential there is a quantum critical point for dimensions greater than two — a metal–insulator transition. This model also plays an important role in the plateau-to-plateu transition in the integer quantum Hall effect, which is also correctly captured by a scaling theory. Yet, in neither of these cases the ground state energy shows any non-analyticity as a function of a suitable tuning parameter, typically considered to be a hallmark of a quantum phase transition, similar to the non-analyticity of the free energy in a classical phase transition. Here we show that von Neumann entropy (entanglement entropy) is non-analytic at these phase transitions and can track the fundamental changes in the internal correlations of the ground state wave function. In particular, it summarizes the spatially wildly fluctuating intensities of the wave function close to the criticality of the Anderson transition. It is likely that all quantum phase transitions can be similarly described.


2020 ◽  
Vol 11 ◽  
pp. 1402-1408
Author(s):  
Alex Latyshev ◽  
Andrew G Semenov ◽  
Andrei D Zaikin

We investigate superconductor–insulator quantum phase transitions in ultrathin capacitively coupled superconducting nanowires with proliferating quantum phase slips. We derive a set of coupled Berezinskii–Kosterlitz–Thouless-like renormalization group equations demonstrating that interaction between quantum phase slips in one of the wires gets modified due to the effect of plasma modes propagating in another wire. As a result, the superconductor–insulator phase transition in each of the wires is controlled not only by its own parameters but also by those of the neighboring wire as well as by mutual capacitance. We argue that superconducting nanowires with properly chosen parameters may turn insulating once they are brought sufficiently close to each other.


2020 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Maximilian Nitsch ◽  
Benjamin Geiger ◽  
Klaus Richter ◽  
Juan-Diego Urbina

We identify a (pseudo) relativistic spin-dependent analogue of the celebrated quantum phase transition driven by the formation of a bright soliton in attractive one-dimensional bosonic gases. In this new scenario, due to the simultaneous existence of the linear dispersion and the bosonic nature of the system, special care must be taken with the choice of energy region where the transition takes place. Still, due to a crucial adiabatic separation of scales, and identified through extensive numerical diagonalization, a suitable effective model describing the transition is found. The corresponding mean-field analysis based on this effective model provides accurate predictions for the location of the quantum phase transition when compared against extensive numerical simulations. Furthermore, we numerically investigate the dynamical exponents characterizing the approach from its finite-size precursors to the sharp quantum phase transition in the thermodynamic limit.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Z. Guguchia ◽  
H. Zhou ◽  
C. N. Wang ◽  
J.-X. Yin ◽  
C. Mielke ◽  
...  

AbstractThe exploration of topological electronic phases that result from strong electronic correlations is a frontier in condensed matter physics. One class of systems that is currently emerging as a platform for such studies are so-called kagome magnets based on transition metals. Using muon spin-rotation, we explore magnetic correlations in the kagome magnet Co3Sn2−xInxS2 as a function of In-doping, providing putative evidence for an intriguing incommensurate helimagnetic (HM) state. Our results show that, while the undoped sample exhibits an out-of-plane ferromagnetic (FM) ground state, at 5% of In-doping the system enters a state in which FM and in-plane antiferromagnetic (AFM) phases coexist. At higher doping, a HM state emerges and becomes dominant at the critical doping level of only xcr,1 ≃ 0.3. This indicates a zero temperature first order quantum phase transition from the FM, through a mixed state, to a helical phase at xcr,1. In addition, at xcr,2 ≃ 1, a zero temperature second order phase transition from helical to paramagnetic phase is observed, evidencing a HM quantum critical point (QCP) in the phase diagram of the topological magnet Co3Sn2−xInxS2. The observed diversity of interactions in the magnetic kagome lattice drives non-monotonous variations of the topological Hall response of this system.


2020 ◽  
Vol 6 (21) ◽  
pp. eaba7292
Author(s):  
L.-Y. Qiu ◽  
H.-Y. Liang ◽  
Y.-B. Yang ◽  
H.-X. Yang ◽  
T. Tian ◽  
...  

The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics when a system is driven through a second-order quantum phase transition. However, for first-order quantum phase transitions, the Kibble-Zurek mechanism is usually not applicable. Here, we experimentally demonstrate and theoretically analyze a power-law scaling in the dynamics of a spin-1 condensate across a first-order quantum phase transition when a system is slowly driven from a polar phase to an antiferromagnetic phase. We show that this power-law scaling can be described by a generalized Kibble-Zurek mechanism. Furthermore, by experimentally measuring the spin population, we show the power-law scaling of the temporal onset of spin excitations with respect to the quench rate, which agrees well with our numerical simulation results. Our results open the door for further exploring the generalized Kibble-Zurek mechanism to understand the dynamics across first-order quantum phase transitions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M.-L. Cai ◽  
Z.-D. Liu ◽  
W.-D. Zhao ◽  
Y.-K. Wu ◽  
Q.-X. Mei ◽  
...  

AbstractQuantum phase transitions (QPTs) are usually associated with many-body systems in the thermodynamic limit when their ground states show abrupt changes at zero temperature with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can also occur in a system composed of only a two-level atom and a single-mode bosonic field, described by the quantum Rabi model (QRM). Here we report an experimental demonstration of a QPT in the QRM using a 171Yb+ ion in a Paul trap. We measure the spin-up state population and the average phonon number of the ion as two order parameters and observe clear evidence of the phase transition via adiabatic tuning of the coupling between the ion and its spatial motion. An experimental probe of the phase transition in a fundamental quantum optics model without imposing the thermodynamic limit opens up a window for controlled study of QPTs and quantum critical phenomena.


Author(s):  
Martha Yolima Suárez Villagrán ◽  
Nikolaos Mitsakos ◽  
John H. Miller Jr

In this article, we discuss several aspects of the quantum phase transition, with special emphasis on the metalinsulator transition. We start with a review of key experimental and theoretical works and then discuss how doping a system reduces the critical temperature of the overall phase transition. Although many aspects of the quantum phase transition still remain an open problem, onsiderable progress has been made in revealing the underlying physics, both theoretically and experimentally.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022027
Author(s):  
V N Udodov

Abstract The spherical Berlin-Katz model is considered in the framework of the epsilon expansion in one-dimensional and two-dimensional space. For the two-dimensional and threedimensional cases in this model, an exact solution was previously obtained in the presence of a field, and for the two-dimensional case the critical temperature is zero, that is, a “quantum” phase transition is observed. On the other hand, the epsilon expansion of critical exponents with an arbitrary number of order parameter components is known. This approach is consistent with the scaling paradigm. Some critical exponents are found for the spherical model in one-and twodimensional space in accordance with the generalized scaling paradigm and the ideas of quantum phase transitions. A new formula is proposed for the critical heat capacity exponent, which depends on the dynamic index z, at a critical temperature equal to zero. An expression is proposed for the order of phase transition with a change in temperature (developing the approach of R. Baxter), which also depends on the z index. An interpolation formula is presented for the effective dimension of space, which is valid for both a positive critical temperature and a critical temperature equal to zero. This formula is general. Transitions with a change in the field in a spherical model at absolute zero are also considered.


Sign in / Sign up

Export Citation Format

Share Document