scholarly journals Mantle upwelling beneath the Apennines identified by receiver function imaging

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Claudio Chiarabba ◽  
Irene Bianchi ◽  
Pasquale De Gori ◽  
Nicola Piana Agostinetti

AbstractMagmatism, uplift and extension diffusely take place along collisional belts. Even though links between mantle dynamics and shallow deformation are becoming more evident, there is still poor understanding of how deep and surface processes are connected. In this work, we present new observations on the structure of the uppermost mantle beneath the Apennines belt. Receiver functions and seismic tomography consistently define a broad zone in the shallow mantle beneath the mountain belt where the shear wave velocities are lower than about 5% and the Vp/Vs ratio is higher than 3% than the reference values for these depths. We interpret these anomalies as a pronounced mantle upwelling with accumulation of melts at the crust-mantle interface, on top of which extensional seismicity responds to the crustal bending. The melted region extends from the Tyrrhenian side to the central part of the belt, with upraise of fluids within the crust favored by the current extension concentrated in the Apennines mountain range. More in general, mantle upwelling, following detachment of continental lithosphere, is a likely cause for elevated topography, magmatism and extension in post-collisional belts.

1995 ◽  
Vol 85 (1) ◽  
pp. 254-268 ◽  
Author(s):  
Jie Zhang ◽  
Charles A. Langston

Abstract Teleseismic broadband P and S waves recorded at the NARS station NE06 (Dourbes, Belgium) are shown to exhibit strong anomalous particle motion not attributable to instrument miscalibration or malfunction. Azimuthally varying radial and tangential components have been observed on 38 recordings after vector rotation of horizontal P waves into the ray direction. The tangenital P waves attain amplitudes comparable to the radial components from the east with negative polarity and west with positive polarity, but tend to be zero in the north and south, suggesting major discontinuities in the crust dipping southward. The SH wave from the east contains a large SPmP phase, an S-to-P conversion at the free surface and then reflected back to the surface from the Moho. The polarity of this SPmP phase presents further evidence for a southward-dipping Moho. We employ ray theory for three-dimensionally dipping interfaces to compute the P-wave response. Linear inverse theory with smoothness constraints is applied to the simultaneous inversions of P-wave receiver functions for four different backazimuths. Through the progressive change of interface strike and dip and the inversion of layer shear-wave velocities, a dipping crustal model that is consistent with both the observed waveforms and results of previous local geophysical surveys has been determined. The results suggest a large velocity contrast in the shallow structure near the surface, another major interface at a depth of 12 km with dip of 10°, and a seismically transparent unit below the interface. The interface at a depth of 12 km reportedly emerges at the Midi fault 50 km north of the station NE06.


2021 ◽  
Author(s):  
Giovanni Diaferia ◽  
Fabrizio Magrini ◽  
Matthew Agius ◽  
Fabio Cammarano

<p><span>The dynamics of crustal extension and the crust-mantle interaction i</span>n the Central-Western Mediterranean and Italian peninsula (i.e. Liguro-Provençal and Tyrrhenian Basin), and plate convergence (i.e. Alpine and Apennines chains) are key for the understating of the current geodynamics setting and its evolution<span> in the region</span>. However, open questions <span>such as the style, depth and extent of the deformation </span>still exist despite the wealth of seismological and non-seismological data acquired in the past decades. In this context, it is necessary to provide improved subsurface models in terms of seismic velocities, from which better constraints on the geodynamic models can be derived.</p><p>We use seismic ambient noise for retrieving phase velocities of Rayleigh and Love waves in the 4-35 s period range, using private (LiSard network<span> in Sardinia island</span>) and publicly available continuous recordings from more than 500 seismic stations. Considering the excellent coverage and the short period of recovered phase velocities, our study aims to provide an unprecedented, high-resolution image of the shallow crust and uppermost mantle.</p><p>We employ a Bayesian trans-<span>dimensional</span>, Monte Carlo Markov chain inversion approach that requires no a-priori model nor a fixed parametrization. In addition to the (isotropic) shear wave velocity structure, we also recover the values of radial anisotropy (ξ=(V<sub>SH</sub>/V<sub>SV</sub>)<sup>2</sup>) as a function of depth, thanks to the joint inversion of both Rayleigh and Love phase velocities.</p><p>Focusing on radial anisotropy, this appears clearly uncoupled with respect to the shear wave velocity structure. The largest negative anisotropy anomalies (V<sub>SH</sub><V<sub>SV</sub>, ξ<0.9) are found in the Liguro-Provençal and western Tyrrhenian basins in the top 10-15 km, suggesting a common structural imprint inherited during the extensional phases of such basins. Conversely, the eastern Tyrrhenian basin shows positive radial anisotropy (V<sub>SH</sub>>V<sub>SV</sub>, ξ>1.1) within the same depth range. This evidence, combined with the observed shear wave velocities typical of the uppermost mantle, corroborates the presence of a sub-horizontal asthenospheric flow driving the current extension and <span>oceanization </span>of the eastern Tyrrhenian basins.</p><p>Moving towards the Italian mainland, a strong anomaly of negative anisotropy appears in the eastern portion of the Apennines chain. We relate such an anisotropic signal with the ongoing compressive regime affecting the area. Here, the high-angle thrust faults and folds, that accommodates the horizontal shortening, obliterate the horizontal layering of the sedimentary deposits, currently constituting the flanks of the fold system.</p><p>Our results suggest that the combination of radial anisotropy and shear wave velocities can unravel key characteristics of the crust and uppermost mantle, such as inherited or currently active structures resulting from past or ongoing geodynamic processes.</p>


2021 ◽  
Author(s):  
Derya Keleş ◽  
Tuna Eken ◽  
Judith M. Confal ◽  
Tuncay Taymaz

<p>The fundamental knowledge on seismic anisotropy inferred from various data sets can enhance our understanding of its vertical resolution that is critical for a better interpretation of past and current dynamics and resultant crustal and mantle kinematics in the Hellenic Trench and its hinterland. To investigate the nature of deformation zones, we perform both local S-wave splitting (SWS) measurements and receiver functions (RFs) analysis. Our preliminary findings from the harmonic decomposition technique performed on radial and tangential RFs suggest relatively more substantial anisotropic signals in the lower crust and uppermost mantle with respect to upper and middle crustal structure in the region. Apparent anisotropic orientations obtained from RFs harmonic decomposition process show several consistencies with those discovered from local SWS measurements at selected stations. The actual anisotropic orientation for the structures, however, requires further modelling of the receiver functions obtained.</p>


2020 ◽  
Author(s):  
Ting Yang ◽  
Tran Danh Hung ◽  
Ba Manh Le ◽  
Mei Xue

<p>The characteristics of oceanic crust are dependent on the spreading rate of a Mid-Ocean Ridge (MOR). Crustal structure near an extinct MOR, therefore, provide unique constraints on how the magma supply and the crustal accretion respond to the reduced and ultimately ceased spreading. We present the crustal structure beneath 11 OBS sites near the extinct MOR in the central sub-basin of the South China Sea (SCS). We use the Receiver Function (RF) method to reveal the thickness and the Vp/Vs ratio of the crust based on the passive-source OBS data collected in this sub-basin. The thickness of the crust varies systematically with the distance to the ridge.  The thinned crust near the ridge likely indicates that, in the late stage of spreading, the magma supply has diminished and the spreading rate has dropped to the ultra-slow range. While the Vp/Vs ratios at most sites fall into the normal range, there exist a few anomalously high Vp/Vs ratios (> 2.0) at sites very close to the ridge. These high Vp/Vs values can be explained by the serpentinization of the uppermost mantle beneath the sites. As the spreading rate and magma supply were reduced, fractures and fissures were easily developed at the frank of the crust accretion, allowing water enters the lowermost crust and serpentinizes the uppermost mantle.</p>


2020 ◽  
Vol 222 (3) ◽  
pp. 2040-2052
Author(s):  
Nagaraju Kanna ◽  
Sandeep Gupta

SUMMARY We investigate the crustal seismic structure of the Garhwal Himalayan region using regional and teleseismic earthquake waveforms, recorded over 19 closely spaced broad-band seismic stations along a linear profile that traverses from the Sub Himalayas to Higher Himalayas. The regional earthquake traveltime analysis provides uppermost mantle P- and S-wave velocities as 8.2 and 4.5 km s−1, respectively. The calculated receiver functions from the teleseismic P waveforms show apparent P-to-S conversions from the Moho as well as from intracrustal depths, at most of the seismic stations. These conversions also show significant azimuthal variations across the Himalayas, indicating complex crustal structure across the Garhwal Himalaya. We constrain the receiver function modelling using the calculated uppermost mantle (Pn and Sn) velocities. Common conversion point stacking image of P-to-S conversions as well as receiver function modelling results show a prominent intracrustal low shear velocity layer with a flat–ramp–flat geometry beneath the Main Central Thrust zone. This low velocity indicates the possible presence of partial melts/fluids in the intracrustal depths beneath the Garhwal Himalaya. We correlate the inferred intracrustal partial melts/fluids with the local seismicity and suggest that the intracrustal fluids are one of the possible reasons for the occurrence of upper-to-mid-crustal earthquakes in this area. The results further show that the Moho depth varies from ∼45 km beneath the Sub Himalayas to ∼58 km to the south of the Tethys Himalayas. The calculated lower crustal shear wave velocities of ∼3.9 and 4.3 km s−1 beneath the Lesser and Higher Himalayas suggest the presence of granulite and partially eclogite rocks in the lower crust below the Lesser and Higher Himalayas, respectively. We also suggest that the inferred lower crustal rocks are the possible reasons for the presence and absence of the lower crustal seismicity beneath the Lesser and Higher Himalayas, respectively.


2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


Sign in / Sign up

Export Citation Format

Share Document