scholarly journals Considerations on the human Achilles tendon moment arm for in vivo triceps surae muscle–tendon unit force estimates

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Denis Holzer ◽  
Florian Kurt Paternoster ◽  
Daniel Hahn ◽  
Tobias Siebert ◽  
Wolfgang Seiberl

Abstract Moment arm-angle functions (MA-a-functions) are commonly used to estimate in vivo muscle forces in humans. However, different MA-a-functions might not only influence the magnitude of the estimated muscle forces but also change the shape of the muscle’s estimated force-angle relationship (F-a-r). Therefore, we investigated the influence of different literature based Achilles tendon MA-a-functions on the triceps surae muscle–tendon unit F-a-r. The individual in vivo triceps torque–angle relationship was determined in 14 participants performing maximum voluntary fixed-end plantarflexion contractions from 18.3° ± 3.2° plantarflexion to 24.2° ± 5.1° dorsiflexion on a dynamometer. The resulting F-a-r were calculated using 15 literature-based in vivo Achilles tendon MA-a-functions. MA-a-functions affected the F-a-r shape and magnitude of estimated peak active triceps muscle–tendon unit force. Depending on the MA-a-function used, the triceps was solely operating on the ascending limb (n = 2), on the ascending limb and plateau region (n = 12), or on the ascending limb, plateau region and descending limb of the F-a-r (n = 1). According to our findings, the estimated triceps muscle–tendon unit forces and the shape of the F-a-r are highly dependent on the MA-a-function used. As these functions are affected by many variables, we recommend using individual Achilles tendon MA-a-functions, ideally accounting for contraction intensity-related changes in moment arm magnitude.

Author(s):  
Nathan L. Lehr ◽  
William H. Clark ◽  
Michael D. Lewek ◽  
Jason R. Franz

The triceps surae muscle tendon unit is comprised of the lateral and medial gastrocnemius (MG) and soleus (SOL) muscles and three in series elastic “subtendons” that form the Achilles tendon. Comparative literature and our own in vivo evidence suggests that sliding between adjacent subtendons may facilitate independent muscle actuation. We aim to more clearly define the relation between individual muscle activation and subtendon tissue displacements. Here, during fixed-end contractions, electrical muscle stimulation controlled the magnitude of force transmitted via individual triceps surae muscles while ultrasound imaging recorded resultant subtendon tissue displacements. We hypothesized that MG and SOL stimulation would elicit larger displacements in their associated subtendon. 10 young adults completed 4 experimental activations at 3 ankle angles (-20°, 0°, 20°) with knee flexed to approximately 20°: MG stimulation (STIMMG), SOL stimulation (STIMSOL), combined stimulation, and volitional contraction. At 20° plantarflexion, STIMSOL elicited 49% larger tendon non-uniformity (SOL – MG subtendon tissue displacement) than that of STIMMG (p=0.004). For STIMSOL, a one-way post-hoc ANOVA revealed a significant main effect of ankle angle (p=0.009) on Achilles tendon non-uniformity. However, peak tendon non-uniformity decreased by an average of 61% from plantarflexion to dorsiflexion, likely due to an increase in passive tension. Our results suggest that localized tissue displacements within the Achilles tendon respond in anatomically consistent ways to differential patterns of triceps surae muscle activation, but these relations are highly susceptible to ankle angle. This in vivo evidence points to at least some mechanical independence in actuation between the human triceps surae muscle-subtendon units.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5182 ◽  
Author(s):  
William H. Clark ◽  
Jason R. Franz

The human Achilles tendon (AT) consists of sub-tendons arising from the gastrocnemius and soleus muscles that exhibit non-uniform tissue displacements thought to facilitate some independent actuation. However, the mechanisms governing non-uniform displacement patterns within the AT, and their relevance to triceps surae muscle contractile dynamics, have remained elusive. We used a dual-probe ultrasound imaging approach to investigate triceps surae muscle dynamics (i.e., medial gastrocnemius-GAS, soleus-SOL) as a determinant of non-uniform tendon tissue displacements in the human AT. We hypothesized that superficial versus deep differences in AT tissue displacements would be accompanied by and correlate with anatomically consistent differences in GAS versus SOL muscle shortening. Nine subjects performed ramped maximum voluntary isometric contractions at each of five ankle joint angles spanning 10° dorsiflexion to 30° plantarflexion. For all conditions, SOL shortened by an average of 78% more than GAS during moment generation. This was accompanied by, on average, 51% more displacement in the deep versus superficial region of the AT. The magnitude of GAS and SOL muscle shortening positively correlated with displacement in their associated sub-tendons within the AT. Moreover, and as hypothesized, superficial versus deep differences in sub-tendon tissue displacements positively correlated with anatomically consistent differences in GAS versus SOL muscle shortening. We present the first in vivo evidence that triceps surae muscle dynamics may precipitate non-uniform displacement patterns in the architecturally complex AT.


2005 ◽  
Vol 99 (3) ◽  
pp. 1050-1055 ◽  
Author(s):  
Christopher I. Morse ◽  
Jeanette M. Thom ◽  
Neil D. Reeves ◽  
Karen M. Birch ◽  
Marco V. Narici

Sarcopenia and muscle weakness are well-known consequences of aging. The aim of the present study was to ascertain whether a decrease in fascicle force (Ff) could be accounted for entirely by muscle atrophy. In vivo physiological cross-sectional area (PCSA) and specific force (Ff/PCSA) of the lateral head of the gastrocnemius (GL) muscle were assessed in a group of elderly men [EM, aged 73.8 yr (SD 3.5), height 173.4 cm (SD 4.4), weight 78.4 kg (SD 8.3); means (SD)] and for comparison in a group of young men [YM, aged 25.3 yr (SD 4.4), height 176.4 cm (SD 7.7), weight 79.1 kg (SD 11.9)]. GL muscle volume (Vol) and Achilles tendon moment arm length were evaluated using magnetic resonance imaging. Pennation angle and fiber fascicle length (Lf) were measured using B-mode ultrasonography during isometric maximum voluntary contraction of the plantar flexors. PCSA was estimated as Vol/Lf. GL Ff was calculated by dividing Achilles tendon force by the cosine of θ, during the interpolation of a supramaximal doublet, and accounting for antagonist activation level (assessed using EMG), Achilles tendon moment arm length, and the relative PCSA of the GL within the plantar flexor group. Voluntary activation of the plantar flexors was lower in the EM than in the YM (86 vs. 98%, respectively, P < 0.05). Compared with the YM, plantar flexor maximal voluntary contraction torque and Ff of the EM were lower by 47 and 40%, respectively ( P < 0.01). Both Vol and PCSA were smaller in the EM by 28% ( P < 0.01) and 16% ( P < 0.05), respectively. Also, pennation angle was 12% smaller in the EM, whereas there was no significant difference in Lf between the YM and EM. After accounting for differences in agonists and antagonists activation, the Ff/PCSA of the EM was 30% lower than that of the YM ( P < 0.01). These findings demonstrate that the loss of muscle strength with aging may be explained not only by a reduction in voluntary drive to the muscle, but mostly by a decrease in intrinsic muscle force. This phenomenon may possibly be due to a reduction in single-fiber specific tension.


2020 ◽  
Vol 36 (4) ◽  
pp. 209-216
Author(s):  
Rebecca L. Krupenevich ◽  
William H. Clark ◽  
Gregory S. Sawicki ◽  
Jason R. Franz

Ankle joint quasi-stiffness is an aggregate measure of the interaction between triceps surae muscle stiffness and Achilles tendon stiffness. This interaction may be altered due to age-related changes in the structural properties and functional behavior of the Achilles tendon and triceps surae muscles. The authors hypothesized that, due to a more compliant of Achilles’ tendon, older adults would exhibit lower ankle joint quasi-stiffness than young adults during walking and during isolated contractions at matched triceps surae muscle activations. The authors also hypothesized that, independent of age, triceps surae muscle stiffness and ankle joint quasi-stiffness would increase with triceps surae muscle activation. The authors used conventional gait analysis in one experiment and, in another, electromyographic biofeedback and in vivo ultrasound imaging applied during isolated contractions. The authors found no difference in ankle joint quasi-stiffness between young and older adults during walking. Conversely, this study found that (1) young and older adults modulated ankle joint quasi-stiffness via activation-dependent changes in triceps surae muscle length–tension behavior and (2) at matched activation, older adults exhibited lower ankle joint quasi-stiffness than young adults. Despite age-related reductions during isolated contractions, ankle joint quasi-stiffness was maintained in older adults during walking, which may be governed via activation-mediated increases in muscle stiffness.


Author(s):  
Justin D. Cowder ◽  
Thomas S. Buchanan ◽  
Kurt T. Manal

Accurate estimates for Achilles tendon moment arm (MA) are essential when computing gastroc-soleus force from the net plantarflexion moment. Errors in approximating the Achilles tendon MA will adversely affect the muscle force estimate. We have noted that Achilles tendon MAs reported by Maganaris [1] and others are significantly greater (> 1 cm) than values used by Delp et al. computed using SIMM [2]. It is important to note that the stature of Delp’s lower limb model was almost identical to the average weight and height of the subjects in a study by Maganaris. This led us to question which MA profiles were more anatomically meaningful. To address this, we calculated Achilles tendon MAs for 10 male subjects using a previously described method. The method combines ultrasound and video-based motion capture, and referred to as the hybrid method. Subjects in our study were chosen to ensure they were of a similar stature to those tested by Maganaris, thereby minimizing confounding effects of subject anthropometrics.


2000 ◽  
Vol 83 (4-5) ◽  
pp. 363-369 ◽  
Author(s):  
Constantinos N. Maganaris ◽  
Vasilios Baltzopoulos ◽  
Anthony J. Sargeant

Sign in / Sign up

Export Citation Format

Share Document